
A Deep Reinforcement Learning Approach to Concurrent Bilateral Negotiation
Pallavi Bagga1∗ , Nicola Paoletti1 , Bedour Alrayes2 and Kostas Stathis1

1Royal Holloway, University of London, UK
2King Saud University, Saudi Arabia

{pallavi.bagga, nicola.paoletti}@rhul.ac.uk, balrayes@ksu.edu.sa, kostas.stathis@rhul.ac.uk

Abstract
We present a novel negotiation model that allows
an agent to learn how to negotiate during con-
current bilateral negotiations in unknown and dy-
namic e-markets. The agent uses an actor-critic
architecture with model-free reinforcement learn-
ing to learn a strategy expressed as a deep neu-
ral network. We pre-train the strategy by supervi-
sion from synthetic market data, thereby decreasing
the exploration time required for learning during
negotiation. As a result, we can build automated
agents for concurrent negotiations that can adapt
to different e-market settings without the need to
be pre-programmed. Our experimental evaluation
shows that our deep reinforcement learning based
agents outperform two existing well-known negoti-
ation strategies in one-to-many concurrent bilateral
negotiations for a range of e-market settings.

1 Introduction
We are concerned with the problem of learning a strategy for
a buyer agent to engage in concurrent bilateral negotiations
with unknown seller agents in open and dynamic e-markets
such as E-bay1. Previous work in this context has mainly
focused on heuristic strategies [Nguyen and Jennings, 2004;
Mansour and Kowalczyk, 2014; An et al., 2006], some of
which adapt to changes in the environment [Williams et al.,
2012]. Different bilateral negotiations are managed in such
strategies either through a coordinator agent [Rahwan et al.,
2002] or by coordinating multiple dialogues internally [Al-
rayes and Stathis, 2013], but do not support learning which
is our main focus. Other approaches use learning based on
Genetic Algorithms (GA) [Oliver, 1996; Zou et al., 2014],
but they require a huge number of trials for obtaining a
good strategy, which makes them infeasible for online set-
tings. Reinforcement Learning (RL)-based negotiation typ-
ically employ Q-learning [Papangelis and Georgila, 2015;
Bakker et al., 2019] which does not support continuous ac-
tions. This is an important limitation in our setting because
we want to learn how much to concede e.g. on the price of
an item for sale, which naturally leads to a continuous action
space. Consequently, the design of autonomous agents capa-
ble of learning a strategy from concurrent negotiations with
other agents is still an important open problem.

∗Contact Author
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We propose, to the best of our knowledge, the first
Deep Reinforcement Learning (DRL) approach for one-to-
many concurrent bilateral negotiations in open, dynamic
and unknown e-market settings. Our DRL-inspired model
ANEGMA (Adaptive NEGotiation model for e-MArkets) al-
lows the buyer to develop an adaptive strategy to effectively
use against its opponents. Such opponents use fixed but un-
known to the agent strategies during negotiations, giving rise
to an environment with incomplete information. We choose
deep neural networks as they provide a rich class of strategy
functions to capture the complex decisions-making required.

Since RL approaches need a long time to find an optimal
policy from scratch we pre-train our deep negotiation strate-
gies using supervised learning (SL) from a set of examples.
To overcome the lack of real-world data for the initial train-
ing, we generate synthetic datasets using the simulation envi-
ronment in [Alrayes et al., 2016] and two well-known strate-
gies for concurrent bilateral negotiation described in [Alrayes
et al., 2018] and [Williams et al., 2012] respectively.

With this work, we empirically demonstrate three impor-
tant benefits of our deep learning framework for automated
negotiations: 1) existing negotiation strategies can be accu-
rately approximated using neural networks; 2) evolving a pre-
trained strategy using DRL with additional negotiation expe-
rience yields strategies that even outperform the teachers, i.e.,
the strategies used for supervision; 3) buyer strategies trained
assuming a particular seller strategy quickly adapt via DRL
to different (and unknown) sellers’ behaviours.

In summary, our contribution is threefold: we propose a
novel agent model for one-to-many concurrent bilateral ne-
gotiations based on DRL and SL; we extend the simulation
environment [Alrayes et al., 2016] to generate data and per-
form experiments that support agent learning for negotiation;
and we run extensive experiments showing that our approach
outperforms the existing strategies and produces adaptable
agents that can transfer to a range of e-market settings.

2 Related Work
RL has been proposed as a learning mechanism for nego-
tiation environments with incomplete information. A num-
ber of approaches use Q-learning, e.g. in contract ne-
gotiation [Rodriguez-Fernandez et al., 2019], however the
state/action space in that work is not continuous as in ours.
The work of [Bakker et al., 2019] uses tabular Q-learning
to learn the bidding strategy by discretizing the continuous
state/action space (not optimal for large state/action spaces
as it may lead to the curse of dimensionality and loss of rele-



Figure 1: The CONAN Negotiation Protocol [Alrayes et al., 2018]

vant information about the state/action domain structure). We
avoid these issues by using a model-free actor-critic RL ap-
proach [Lillicrap et al., 2016].

The work of [Lewis et al., 2017] combines SL (Recurrent
Neural Network (RNN)) and RL (REINFORCE [Williams,
1992]) to learn a strategy and linguistic skills by being trained
on human negotiation dialogues. We also combine SL and RL
but with the main focus to train the agent learn a bidding strat-
egy from agent interactions governed by a negotiation proto-
col. In addition, we use Artificial Neural Network (ANN) for
SL and the actor-critic model called DDPG [Lillicrap et al.,
2016] for RL.

Independently of the approach, numerous works in the do-
main of bilateral negotiation rely on the Alternating Offers
protocol [Rubinstein, 1982] as the negotiation mechanism,
which, despite its simplicity does not capture many practi-
cal bargaining scenarios. We will be adopting the CONAN
negotiation protocol shown in Fig. 1, that can support a wider
range of practical negotiation applications.

3 The ANEGMA Model
3.1 Negotiation Environment
We consider e-marketplaces like E-bay where the competition
is visible, i.e. a buyer can observe the number of competitors
that are dealing with the same resource from the same seller.
We assume the environment to be a single e-market m with
P agents, with a non-empty set of buyers Bm and a non-
empty set of sellers Sm – these sets need not be mutually
exclusive. For a buyer b ∈ Bm and resource r, we denote
with St

b,r ⊆ Sm the set of sellers from market m which, at
time point t, negotiate with b for a resource r (over a range
of issues I). The buyer b uses |St

b,r| negotiation threads, in
order to negotiate concurrently with each seller ∈ St

b,r. We
assume that no agent can be both buyer and seller for the same
resource at the same time, that is, ∀b, r, t. s ∈ St

b,r =⇒
St
s,r = ∅. Ct

b,r = {b′ 6= b ∈ Bm | St
b′,r 6= ∅} is the set of

competitors of b, i.e. those agents negotiating with the same
sellers and for the same resource r as that of b. However, it is

Figure 2: The Architecture of ANEGMA

possible that a seller, whom a buyer b is negotiating with, to
accept a deal from a competitor buyer b′ ∈ Ct

b,r.
The class of concurrent bilateral negotiations that we study

is governed by the negotiation protocol of Fig. 1. This pro-
tocol assumes an open e-market where agents can enter or
leave the negotiation at their own will. A buyer b always starts
the negotiation by making an offer whose start time is tstart .
Any negotiation is for a resource r, since we index the ne-
gotiation thread with the seller’s name s and the resource r,
and can last for up to time tb, the maximum time b can ne-
gotiate for. The deadline for b is, thus, tend = tstart + tb,
which for simplicity we assume for all resources being ne-
gotiated. Information about the deadline tb, Initial Price IPb

and Reservation Price RPb is private to each b ∈ Bm. Each
seller s also has its own Initial Price IPs, Reservation Price
RPs and maximum negotiation duration parameter ts (which
are not visible by other agents). The protocol is turn-based
and allows agents to take actions from a pool Actions at each
negotiation state (S1 to S5 – see Fig. 1), where Actions =
{offer(x ), reqToReserve, reserve, cancel , confirm, accept ,
exit}. In S1, s can accept current b’s offer and move to S3,
or make a counter-offer and move to S2. In S2, b can accept
s’s offer (success), make a counter-offer and move to S1, or
request to reserve and move to S4. In S3, b can confirm its
offer (success), or request to reserve and move to S4. In S4,
s can reserve and move to S5. In S5, b can accept (success).
Either agent can exit the negotiation at any state.

3.2 ANEGMA Components
Our proposed agent negotiation model supports learning dur-
ing concurrent bilateral negotiations with unknown oppo-
nents in dynamic and complex e-marketplaces. In this model,
we use a centralized approach in which the coordination is
done internally to the agent via multi-threading synchroniza-
tion. This approach minimizes the agent communication
overhead and thus, improve the run-time performance. The
different components of the proposed model are shown in
Fig. 2 and explained below.

Physical Capabilities
The sensors of the agent enable it to access an e-marketplace.
They allow a buyer b to perceive the current (external) state
of the environment st and represent that state locally in the



form of internal attributes as shown in Table 1. Some of these
attributes (NSr, NCr) are perceived by the agent using its
sensors, some of them (IPb, RPb, tend ) are stored locally in
its knowledge base and some of the them (Sneg , Xbest , Tleft )
are obtained while interacting with other seller agents during
a negotiation. At time t, the internal agent representation of
the environment is st, which is used by the agent to decide
what action at to execute using its actuators. Action execu-
tion then changes the state of the environment to st+1.

Learning Capabilities
The foundation of our model is a component providing learn-
ing capabilities similar to those in the Actor-Critic architec-
ture as in [Lillicrap et al., 2016]. It consists of three sub-
components: Negotiation Experience, Decide and Evaluate.

Negotiation Experience stores historical information about
previous negotiation experiences which involve the interac-
tions of an agent with other agents in the market. Experience
elements are of the form 〈st, at, rt, st+1〉, where st is the state
of the e-market environment, at is action performed by b at
st, rt is scalar reward or feedback received from the environ-
ment and st+1 is new e-market state after executing at.

Decide refers to a negotiation strategy which helps b to
choose an optimal action at among a set of actions (Actions)
at a particular state st. In particular, it consists of two differ-
ent functions fc and fr. fc takes state st as an input and re-
turns a discrete action among counter-offer, accept, confirm,
reqToReserve and exit, see (1). When fc decides to perform
a counter-offer action, fr is used to compute, given an in-
put state st, the value of the counter-offer, see (2). From a
machine learning perspective, deriving fc corresponds to a
classification problem, deriving fr to a regression problem.

fc(st) = at, at ∈ Actions (1)

fr(st) = x, x ∈ [IPb, RPb] (2)
Evaluate refers to a critic which helps b learn and evolve

the strategy for unknown and dynamic environments. It is a
function of K (K < N ) past negotiation experiences ran-
domly selected. The learning process of b is retrospective
since it depends on the feedback (or scalar rewards) obtained
during classification (i.e. rt using (3)) and regression (i.e.
r′t using (4)) from the e-market environment by performing
action at at state st These rewards evaluate the discrete and
continuous action of Decide respectively at time t . Our de-
sign of reward functions accelerate agent learning by allow-
ing b to receive rewards after every action it performs in the
environment instead of at the end of the negotiation.

rt (during classification) =


Ub(x, t), if t ≤ tend , Agreement
−1, if t ≤ tend , No Deal
r′t if at = Counter-offer
0, otherwise

(3)

r′t (during regression) =


Ub(x, t), if t ≤ tend , x ≤ ∀i ∈ Ot

−1, if t ≤ tend , x > ∀i ∈ Ot

0, otherwise
(4)

In (3) and (4), Ub(x, t) refers to the utility of offer x (gen-
erated using (2)) at time t and calculated using Initial Price

Attribute Description

NSr Number of sellers that b is concurrently deal-
ing for resource r at time t (|St

b,r|).
NCr Number of buyer agents competing with b

for resource r at time t (|Ct
b,r|).

Sneg Current state of the negotiation protocol (S1
to S5 [Alrayes et al., 2018])).

Xbest Best offer made by either b or s in Sneg .
Tleft Time left for b to reach tend after the last

action of s.
IPb Minimum price which b can offer at the start

of the negotiation.
RPb Maximum price which b can offer to s.

Table 1: Agent’s State Attributes

(IPb), Reservation Price (RPb), agreement offer (x) and tem-
poral discount factor (dt ∈ [0, 1]) [Williams et al., 2012] as
defined in (5), assists b to negotiate without delay. The re-
ward function r′t in (4) helps b learn that it should not offer
more than what active sellers have already offered it. Ot is a
list of preferred offers received from sellers s ∈ St

b,r at time
t, which b maintains during negotiation. In (3), “No Deal”
means that the agent chooses to quit the negotiation.

Ub(x, t) =

(
RPb − x

RPb − IPb

)
.

(
t

tend

)dt

(5)

In our experiments, the value of dt is set to 0.6. Higher the
dt value, higher is the penalty due to delay.

4 Materials and Methods
4.1 Data Set Collection
In order to collect the dataset to train the ANEGMA agent us-
ing an SL model, we have used a simulation environment [Al-
rayes et al., 2016] that supports concurrent negotiations be-
tween buyers and sellers. The buyers use the strategies pre-
sented in [Alrayes et al., 2018] and [Williams et al., 2012],
whereas the sellers use the strategies described in [Faratin et
al., 1998]. We could have also collected training data us-
ing other buyer strategies for concurrent negotiation in the
same setting as ours, or any real-world market data; how-
ever, to the best of our knowledge none of these were read-
ily available. We have selected the input features of our
dataset manually, and this set of features correspond to the
agent’s state attributes in Table 1. To avoid choosing overlap-
ping features, we have applied the Pearson Correlation coef-
ficient [Lee Rodgers and Nicewander, 1988] and ensured no
correlation (with all correlation coefficients between −0.16
and 0.16; most are closer to 0) between the selected features.

4.2 Performance Evaluation Measures
To successfully evaluate the performance of ANEGMA and
compare it with other negotiation approaches, it is necessary
to identify the appropriate performance metrics. For our ex-
periments, we have used the following widely adopted met-
rics [Williams et al., 2012; Faratin et al., 1998; Nguyen and



Jennings, 2004; Alrayes et al., 2018]: Average utility rate
(Uavg ), Average negotiation time (Tavg ) and Percentage of
successful negotiations (S%), which are described below:
• Uavg : Sum of all the utilities of the buyer averaged over

the successful negotiations. (Ideal value: High(1.0))
• Tavg : Total time taken by the buyer (in milliseconds)

averaged over all successful negotiations to reach the
agreement. (Ideal value: Low(≈ 1000ms))
• S%: Proportion of total negotiations in which the buyer

reaches an agreement successfully with one of the con-
current sellers. (Ideal value: High(100%))

Our main motive behind calculating the Uavg is to calculate
the agent profit over only successful negotiations, hence we
exclude the unsuccessful ones in this metric. We capture the
(un)successful negotiations in a separate metric called S%.

4.3 Methodology
During our experiments, sellers and competitor buyers use
fixed strategies that are initially unknown to the buyer. As
these strategies are fixed, they will be learned by ANEGMA
later, after a number of simulation runs. Thus after a num-
ber of negotiation simulation runs our environment can be
considered fully-observable. Given our dynamic (i.e. agents
leave and enter the market at any time) and episodic (i.e. the
negotiation terminates at some point) environment, we use a
model-free, off-policy RL approach which generates a deter-
ministic policy based on the policy gradient method to sup-
port continuous control. Specifically, we use the Deep De-
terministic Policy Gradient algorithm (DDPG), which is an
actor-critic RL approach and generates a deterministic action
selection policy for the buyer (see [Lillicrap et al., 2016] for
more details). We consider a model-free RL approach because
our buyer is more concerned with determining which action
to take for a particular state rather than predicting a new state.
This is because the strategies of sellers and competitor buyers
are unknown. On the other hand, we consider the off-policy
approach for efficient and independent exploration of contin-
uous action spaces. Furthermore, instead of initializing the
RL policy randomly, we use a policy generated by an ANN
[Goodfellow et al., 2016] due to its compatibility with DRL
in order to speed up and reduce the cost of the RL process. To
reduce over-fitting and generalization errors, we apply regu-
larization techniques (dropout) during the training of ANN.

5 Experimental Setup and Results
Our experiments are based on the following hypotheses.

Hypothesis A: The Market Density (MD), the Market ra-
tio or Demand/Supply Ratio (MR), the Zone of Agreement
(ZoA) and the Buyer’s Deadline (tend ) have a considerable
effect on the success of negotiations. Here,
• MD is the total agents in the e-market at any given time

dealing with the same resource as that of our buyer.
• MR is the ratio of the total number of buyers over the

sellers in the e-market.
• ZoA refers to the intersection between the price ranges

of buyers and sellers for them to agree.

Values

IPb [300− 350]
RPb [500− 550]
IPs 100%[500−550], 60%[580−630], 10%[680−

730]
RPs 100%[300−350], 60%[380−430], 10%[480−

530]
MD H{30, 40, 50}, A{18, 23, 28}, L{8, 10, 12}
MR H{10:1, 1:1, 1:10}, A{5:1, 1:1, 1:5},

L{2:1, 1:1, 1:2}
tend Lg[151s –210s], A[91s –150s], Sh[30s –90s]
ZoA H(100%), A(60%), L(10%)

Table 2: Simulation Parameter Values

In practice, buyers have no control over these parameters ex-
cept the deadline, which can be decided by the user or con-
strained by a higher-level goal the buyer is trying to achieve.

Hypothesis B: The ANEGMA buyer outperforms SL, CO-
NAN, and Williams’ negotiation strategies in terms of Uavg ,
Tavg and S% in a range of e-market settings.

Hypothesis C: An ANEGMA buyer if trained against a
specific seller strategy, still performs well against other un-
known seller strategies. This shows that the ANEGMA agent
behaviour is adaptive in that the agent transfers knowledge
from previous experience to unknown e-market settings.

5.1 Design of the Experiments
To carry out our experiments, we have extended the simula-
tion environment RECON [Alrayes et al., 2016] with a new
online learning component for ANEGMA.

Seller Strategies
For the purpose of training our SL model and conduct-
ing large-scale quantitative evaluations, we have used two
groups of fixed seller strategies developed by Faratin et
al. [1998]: Time-Dependent (Linear, Conceder and Boul-
ware) and Behaviour-Dependent (Relative tit-for-tat, Random
Absolute tit-for-tat and Averaged tit-for-tat). During experi-
mentation, the same private deadlines were used for both sell-
ers and buyer. Other parameters such as IPs and RPs are
determined by the ZoA parameter, as shown in Table 2.

Simulation Parameters
We assume that the buyer negotiates with multiple sellers
concurrently to buy a second-hand laptop (r = Laptop)
based only on a single issue Price (I = {Price}). We
stress that the single-issue assumption is not unrealistic for
e-markets like e-Bay, where sellers advertise a product with a
fixed set of issues (e.g. Lenovo, 16GB RAM, 250GB HDD,
i7 processor) and the only issue being negotiated is price.
The simulated market allows the agents to enter and leave
the market at their own will. The maximum number of agents
allowed in the market, the demand/supply ratio, the buyer’s
deadline and the ZoAs are simulation-dependent.

As in [Alrayes et al., 2018], three qualitative values are
considered for each parameter during simulations, e.g., High
(H), Average (A) and Low (L) for MD or Long (Lg), Aver-
age (A) and Short (Sh) for tend . Parameters are reported in



Figure 3: Effect of Market Density and Zone of Agreement on Pro-
portion of Successful Negotiations using time-dependent (left) and
behaviour-dependent (right) strategies.

Table 2. The user can select one of such qualitative values
for each parameter. Each qualitative value corresponds to a
set of three quantitative values, of which only one is chosen
at random for each simulation (e.g., setting H for parameter
MD corresponds to choosing at random among 30, 40, and
50). The only exception is parameter ZoA, which maps to
a range of uniformly distributed quantitative values for the
seller’s initial price IPs and reservation price RPs (e.g., se-
lecting A for ZoA leads to a value of IPs uniformly sampled
in the interval [580, 630]). Therefore, the total number of sim-
ulation settings is 81, as we consider 3 possible settings for
each of MD , MR, tend , and ZoA (see Table 2).

5.2 Empirical Evaluation
Hypothesis A (MD , MR, ZoA and tend Have Significant
Impact on Negotiations)
We experimented with 81 different e-market settings over 500
simulations using the CONAN buyer strategy. Both time-
dependent and behaviour-dependent seller strategies were
considered for each setting. These experiments suggest that
MD and ZoA have a considerable effect on S% (Fig. 3). We
observe that the agents reach more negotiation agreements
when MD is low. Also, there is not much difference in the
agreement rate for 60% and 100% ZoA when MD is low. The
small number of successful negotiations for 10% ZoA is not
unexpected since only a minority of agents is willing to con-
cede more in such a small ZoA. On the other hand, MR and
tend have, according to our experiments, a comparably minor
impact on the negotiation success (only some effect of MR on
S% is observed under low MD against behaviour-dependent
strategies)2. Moreover, we performed significance tests (i.e.
Z-tests for independent proportions) for all the relevant pair-
wise comparisons. All the differences in the proportions of
successful runs were found significant at p < 2.12E − 13.3

2See [Bagga et al., 2020] for detailed results on MR.
3For each ZoA=H,A,L, we tested (MD=H vs MD=A) and

(MD=A vs MD=L). For each MD=H,A,L, we tested (ZoA=L vs

Metric CONAN WILLIAMS

Table 3: Performance comparison of CONAN and Williams’ model.
Best results are in bold.

Hence, these results support our hypothesis.

Hypothesis B (ANEGMA Outperforms SL and CONAN)
We performed simulations for our ANEGMA agent in low
MD , 60% ZoA4, high MR and a long tend because these
settings yielded the best performance in terms of S% in our
experiments for Hypothesis A. We used these settings against
Conceder Time Dependent and Relative Tit for Tat Behaviour
Dependent seller strategies.

Firstly, we collected training data for ANN using two dis-
tinct strategies for supervision, viz. CONAN [Alrayes et al.,
2018] and Williams [Williams et al., 2012]. Both were run
for 500 simulations and with the same settings. Table 3 com-
pares the performances of CONAN’s and Williams’ models.
CONAN outperforms Williams’ strategy in these settings.

Then, the resulting trained ANN models – called ANN-C
and ANN-W respectively – were used as the initial strate-
gies in our DRL approach (based on DDPG), where strate-
gies evolved using negotiation experience from additional
500 simulations. In the remainder, we will abbreviate this
model by ANEGMA(SL+RL).

Finally, we used test data from 101 simulations to compare
the performance of such derived ANEGMA(SL+RL) buyers
against CONAN, Williams’ model, ANN-C, ANN-W, and the
so-called ANEGMA(RL) model, which used DDPG but ini-
tialized with a random strategy.

According to our results shown in Table 4, the performance
of ANN-C is comparable to that of CONAN (see Table 3).
We observe the same for ANN-W and the William’s strategy.
So, we conclude that our approach can successfully produce
ANN strategies which are able to imitate the behaviour and
performance of the CONAN and Williams’ models (the train-
ing accuracies were in the range between 93.0% and 98.0%).

Even more importantly, the results demonstrate that
ANEGMA(SL+RL)-C (i.e. DDPG initialized with ANN-
C) and ANEGMA(SL+RL)-W (i.e. DDPG initialized with
ANN-W) improve on their respective initial ANN strate-
gies obtained by SL, and outperform ANEGMA(RL) initial-
ized at random, see Table 4. This proves that both the
evolution of the strategies via DRL and the initial supervi-
sion are beneficial. Furthermore, ANEGMA(SL+RL)-C and
ANEGMA(SL+RL)-W also outperform the existing “teacher

ZoA=A) and (ZoA=L vs ZoA=H).
4See [Bagga et al., 2020] for more results with 100% ZOA.



Metric ANN ANEGMA(SL+RL) ANEGMA(RL)

Table 4: Performance comparison of ANN VS ANEGMA(SL+RL) VS ANEGMA(RL). Best results are in bold.

Metric ANN ANEGMA(SL+RL) ANEGMA(RL)

Table 5: Performance comparison for the adaptive behaviour of ANN VS ANEGMA(SL+RL) VS ANEGMA(RL). Best results are in bold.

strategies” (CONAN and Williams) used for the initial super-
vision and hence can improve on them, see Table 3.

Hypothesis C (ANEGMA is Adaptable)
In this final test, we evaluate how well our ANEGMA agents
can adapt to environments different from those used at
training-time. Specifically, we deploy strategies trained us-
ing Conceder Time Dependent opponents into an environ-
ment with Relative Tit for Tat Behaviour Dependent oppo-
nents, and vice-versa. The ANEGMA agents use experience
from 500 simulations to adapt to the new environment. Re-
sults are presented in Table 5 and show clear superiority of
the ANEGMA agents over the ANN-C and ANN-W strate-
gies which, without online retraining, cannot maintain their
performance in the new environment. This confirms our hy-
pothesis that ANEGMA agents can learn to adapt at run-time
to different unknown seller strategies.

Further Discussion
Pondering over the negative average utility of ANEGMA(RL)
(Table 4), recall that we define utility as in Equation (5) but
without the discount factor. Therefore, if an agent concedes
a lot to make a deal, it will collect negative utility. This is
precisely what happens to the initial random (and inefficient)
strategy used in ANEGMA(RL). The combination of SL and
DRL prevents this problem as it uses an initial pre-trained
strategy which is much less likely to incur negative utility. For
the same reason, we observe a consistently shorter Tavg for
ANEGMA(RL) caused by a buyer that concedes more to reach
the agreement without negotiating for a long time with the

seller. Hence, a shorter Tavg alone does not generally imply
a better negotiation performance. An additional advantage
of our approach is that it alleviates the common limitation of
RL, namely, that an RL agent needs a non-trivial amount of
experience before reaching satisfactory performance.

6 Conclusions and Future Work
We have proposed ANEGMA, a novel agent negotiation
model supporting agent learning and adaptation during con-
current bilateral negotiations for a class of e-markets. An
ANEGMA agent derives an initial neural network strategy
via supervision from well-known negotiation models, and
evolves the strategy via DRL. We have empirically evalu-
ated the performance of an ANEGMA buyer agent against
fixed but unknown to the agent seller strategies in different
e-market settings. We have shown that ANEGMA outper-
forms well-known “teacher strategies”, the strategies trained
with SL only and those trained with DRL only. Crucially,
our model has also exhibited adaptive behaviour in that it can
transfer to environments with unknown sellers, viz., sellers
that use different strategies from those used during training.

In the future, we will study complex domains with bilateral
negotiations on multiple issues against adaptive opponents.
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