
Neural Predictive Monitoring
for Collective Adaptive Systems

Francesca Cairoli1, Nicola Paoletti2,3, and Luca Bortolussi1⋆

1 Department of Mathematics and Geosciences, Università di Trieste, Italy
2 Department of Computer Science, Royal Holloway, University of London, UK

3 Department of Informatics, King’s College London, UK

Abstract. Reliable bike-sharing systems can lead to numerous environmen-
tal, economic and social benefits and therefore play a central role in the
effective development of smart cities. Bike-sharing models deal with spa-
tially distributed stations and interact with an unpredictable environment,
the users. Monitoring the trustworthiness of such a collective system is of
paramount importance to ensure a good quality of the delivered service,
but this task can become computationally demanding due to the complex-
ity of the model under study. Neural Predictive Monitoring (NPM) [5], a
neural-network learning-based approach to predictive monitoring (PM) with
statistical guarantees, can be employed to preemptively detect violations of a
specific requirement – e.g. a station has no more bikes available or a station is
full. The computational efficiency of NPM makes PM applicable at runtime
even on embedded devices with limited computational power. The goal of
this paper is to demonstrate the applicability of NPM on collective adaptive
systems such as bike-sharing systems. In particular, we first analyze the per-
formance of NPM over a collective system evolving deterministically. Then,
following [7], we tackle a more realistic scenario, where sensors allow only for
partial observability and where the system evolves in a stochastic fashion. We
evaluate the approach on multiple bike sharing network topologies, obtaining
highly accurate predictions and effective error detection rules.

1 Introduction

As the urban population grows there is an increasing need for innovative technologies
that will allow cities to reach a good and sustainable quality of life with an equitable
distribution of resources. Given a service and an urban framework, a developer should
design a solution that guarantees the quality of the service delivered. Systems with
decentralised and distributed designs, comprised of many autonomous and interacting
entities, are known as collective adaptive systems (CAS). In CAS, the user becomes
part of the system design. Formal models provide detailed descriptions of the design
choices of the system under study, whereas formal methods are used to analyse the ef-
fects of these choices on the safety and reliability of such a system. In general, the goal

⋆ This work has been partially supported by the PRIN project “SEDUCE” n.
2017TWRCNB.

2 F. Cairoli et al.

of formal verification is to check if the system satisfies a certain requirement, e.g. avoid-
ing an undesirable or dangerous region of the state space. It is straightforward to frame
verification as a reachability checking problem. Similarly, predictive monitoring (PM)
focuses on the online analysis of such reachability. PM is preemptive, meaning that it
aims at predicting, at runtime, if a future violation of the requirement can be reached
from the current state of the system within a given time-bound. PM is invoked period-
ically and typically at high frequencies. Therefore, reachability needs to be determined
rapidly so that the response is provided before the eventual failure occurs. Any solution
to the PM problem involves a trade-off between the accuracy of the reachability predic-
tion and its computational efficiency. The analysis must execute within strict real-time
constraints and typically with limited hardware resources. Exact formal methods suffer
well-known scalability issues. The general goal of this paper is monitoring the reliabil-
ity of a CAS to ensure good quality of service. This is an extremely challenging task as
the state space is typically large and spatially distributed. Moreover, having humans in
the loop makes the behavioural analysis even more complex. In this paper, we present
NPM-CAS, an adaptation of Neural Predictive Monitoring (NPM) [5] to CAS. NPM
is a machine-learning-based approach to PM that builds on Conformal Predictions
(CP) to provide highly accurate predictions in a highly efficient manner together
with statistical guarantees over its predictions and a principled method for detecting
potential prediction errors, which significantly enhances the reliability of PM estimates.

In summary, the main contributions of this paper are the following:

– We extend Neural Predictive Monitoring of [5] so that it can be applied to CAS,
where the reliability of multiple agents can be synchronously monitored. The
classification problem becomes a multi-output problem instead of a single-output
one as in [5]: each output predicts the reliability of a single agent.

– We extend the CP framework to work under multiple-output classification prob-
lems so that we can have an agent-specific error detection rule and serve-specific
statistical guarantees.

– We extend NPM to allow for stochastic dynamics. In [5] only deterministic and
non-deterministic dynamics where considered. In such a scenario, the classification
problem becomes a multi-class problem as states cannot be deterministically
labelled as safe or unsafe.

– We evaluate the method on three different bike-sharing systems having network
geometries with increasing complexities.

The paper is structured as follows. Section 2 describes the details of the bike-
sharing model. Section 3 formally states the problems solved by NPM for a generic
CAS. Section 4 provides the theoretical background on CP, used to quantify the pre-
dictive uncertainty and to have statistical guarantees. The results of the experimental
evaluation are then presented in Section 5.

2 Bike Sharing System

Bike-sharing systems (BSSs) are becoming important for urban transportation. In
these systems, users arrive at a station, pick up a bike, use it for a while, and then return

Neural Predictive Monitoring for Collective Adaptive Systems 3

it to another station of their choice. Each station has a finite capacity and it cannot host
more bikes than its capacity. Stochasticity is due to the randomness of user choices.

2.1 Model of the System

The BSS is modeled as a Markovian system with M stations and a fleet of N bikes.
Each bike can be either locked at a station i, for i∈{1,...,M}, or in transit between
two stations i and j, for i,j∈{1,...,M} and i≠j. Station i can host at most Ki bikes.
We can frame this system as a population model where individuals, the bikes, can
belong to M2 different species: stationary bikes S={S1,...,SM} for bikes locked in
a station and transitioning bikes T={Ti,j |i≠j} for bikes moving between stations.
The total number of species is thus |S∪T |= |S|+|T |=M2. The state of the system

x(t)∈NM2

counts the number of bikes in each species at time t. At each station, new
users arrive at a rate λi, independently of the number of bikes present in that station.
However, if the station has no bike available, the unhappy user leaves the system.
Instead, if the station is not empty, the user picks up a bike at this station and joins
the pool of riding users and the bikes move from a species in S to a species in T . We
can summarize these events with a transition from Si to Ti,j, given that the bike is
moving from station i towards station j, happening with rate λi ·I(xSi

>0). The trip
time between the two stations is exponentially distributed with mean 1/dij, where
dij is the distance between the two stations. After this time, the riding user wants to
return the bike. If the destination has fewer than Kj bikes, the user returns the bike
to this station and leaves the system. If the station has already Kj bikes, meaning
if it is full, no more bikes can be returned. In this case, the user waits for a slot of
that station to become available. This transition can be summarized as moving from
species Ti,j to species Sj with rate xTij

·I(xSj
<Kj)/dij. The dynamics of the system

is thus fully determined by 2M(M−1) reactions of the form:

Ri,j
1 : Si−→Ti,j with rate λiI(xSi

>0),

Ri,j
2 : Ti,j−→Sj with rate xSj

·I(xTij
<Ki)/dij

for every i≠j∈{1,...M}. Let R denote the set of all possible reactions. The topology
of the network of stations strongly influences the dynamics of the system. Fig. 2
shows a very simple topology where all bikes are equidistant but each station can
have a different arrival rate λi, meaning that some stations can be more popular
than others, and a different capacity Ki.

2.2 Dynamics of the system

The time evolution of the population model presented above can be described by the
deterministic evolution of its probability mass. Let Px0

(x(t)=x) denote the probability
of finding the system in state x at time t given that it was in state x0 at time t0. This
probability satisfies a system of ODEs known as Chemical Master Equation (CME):

∂

∂t
Px0(x(t)=x)=

|R|∑
j=1

[
fRj (x−νj)Px0(x(t)=x−νj)−fRj (x)Px0(x(t)=x)

]
, (1)

4 F. Cairoli et al.

Fig. 1. BSS network with triangular topology: all bikes are equidistant but each station can
have a different arrival rate λi and a different capacity Ki.

where νj is the update vector associated with reaction Rj∈R. The equation above is
the Kolmogorov equation for a population process, considering the inflow and outflow
probability at time t for a state x. Since the CME is a system in general with countably
many differential equations, its analytic or numeric solution is almost always infeasible.

In this regard, approximate solutions become the only viable approach to analyse
the dynamics of a complex stochastic population model. In particular, we can resort
either to stochastic simulation algorithms or to deterministic fluid approximations.

Gillespie simulation. The Gillespie stochastic simulation algorithm (SSA) [8] generates
trajectories that are exact realizations of the CME (Eq. (1)). Given a certain initial
state, one can take a large number of samples (trajectories) that serves as an empirical
estimate of the CME that can be used to extract information about the process via
statistical methods. For example, one can consider an upper and a lower quantile
and obtain a credible interval over the trajectory space (Fig. 2 (right)).

Fig. 2. Deterministic (left) and stochastic (right) trajectory for stationary bikes over the
triangular topology of Fig. 1. In the stochastic version, we show the 95% credible interval
over the trajectory space.

Mean Field Approximation. The deterministic approximation of a stochastic popula-
tion model builds on the observation that stochastic fluctuations tend to average out

Neural Predictive Monitoring for Collective Adaptive Systems 5

as the population size grows larger, i.e. when the number of interacting individuals is
very large. In particular, if the state variables are scaled, so that the state evolution
is independent of the population size, the dynamics of the stochastic models is very
similar to a deterministic one, described by an ODE, the well-known mean-field (MF)
approximation [2, 3, 6, 9]. Thus, in the BSS, as the number of bikes present in the
system increases, the dynamics of the system tends to the following fluid ODE:

dx̂

dt
=
∑
i̸=j

νi,j
1

M
λiI(x̂Si >0)+

νi,j
2

dij
I(M ·x̂Sj <Ki), (2)

where x̂= x
M is the scaled state and νi,j1 and νi,j2 are the original update vectors

respectively for reaction Ri,j
1 and Ri,j

2 . Therefore, MF trajectories have a deterministic
evolution (Fig. 2 (left)). The formalism and dynamics of the Markovian population
model, presented here specifically for a BSS, can be easily applied to a generic CAS.

3 Neural Predictive Monitoring for CAS

In this section, we describe the Neural Predictive Monitoring technique for a generic
CAS evolving with either deterministic or stochastic dynamics.

3.1 Deterministic dynamics

Consider the modelMdet of a CAS with state spaceX evolving deterministically over
discrete time with time steps of width∆t. Consider a temporal horizonH, the dynam-
ics can be described by a function Fdet :X→XH, mapping a state x(t) to a trajectory
Fdet(x(t))=x(t1)···x(tH), where tj := t+j∆t. The measurement process is instead
modeled by a deterministic function µ mapping a state x into its observable part y,
y=µ(x). The CAS is composed of N different agents and we aim at monitoring the
reliability of service for each of these N agents. For instance, in the BSS the agents are
theN bike stations. Reliability is modeled by considering a regionD of the state space
that we want to avoid, referred to as the unsafe or dangerous region. Predictive mon-
itoring of such a system corresponds to deriving a function that approximates a given
reachability specification for all the N agents, Reach(D,x,H)∈{−1,1}N : given a state
x and a set of unsafe statesD, establish whether agent i∈{1,...,N} admits a trajectory

starting from x that reachesD in a timeH. If such a trajectory exists, Reach(i)(D,x,H)

evaluates to 1, −1 otherwise, where Reach(i)(D,x,H) denotes the i-th component of
Reach(D,x,H). The approximation is w.r.t. some given distribution of states, meaning
that we can admit inaccurate reachability predictions if the state has zero probability.

Full observability. We now illustrate the PM problem under the ideal assumption
of full observability (FO).

Problem 1 (PM under FO). Given a CAS (Mdet,Fdet) with N agents, state space
X, a distribution X over X, a time bound H and set of unsafe states D⊂X, find a
function h :X→{−1,1}N that minimizes the probability

Prx∼X

(
h(x)≠Reach(D,x,H)

)
.

6 F. Cairoli et al.

A state x∈X is called positive for agent i w.r.t. a predictor h if the i-th component
of h(x) evaluates to 1, h(i)(x)=1. Otherwise, it is called negative.

As discussed in the next section, finding h, i.e., finding a function approximation
with minimal error probability, can be solved as a supervised multi-output classifica-
tion problem, provided that a reachability oracle is available for generating supervision
data. The predictor h is indeed solving N classification problems at once. In [5] such
a classification problem is solved using deep neural networks, which demonstrated
the best performance across several other machine learning models.

Partial observability. The problem above relies on the assumption that full knowl-
edge about the state is available. However, in most practical applications, state
information is only partial. Under partial observability (PO), we only have access to
a sequence of past observations ȳt=(yt−Hp

,...,yt) which can be generated by applying
the observation function µ to the unknown state sequence xt−Hp

,...,xt, evolving
according to Fdet. In the following, we consider the distribution Y over Y Hp of the
observations sequences ȳt=(yt−Hp,...,yt) induced by state xt−Hp ∼X , dynamics given
by Fdet and observations given by µ.

Problem 2 (PM under PO). Given the system and reachability specification of
Problem 1, find a function g :Y Hp →{−1,1}N that minimizes

Prȳt∼Y

(
g
(
ȳt
)
≠Reach(D,xt,H)

)
.

In other words, g should predict reachability values given in input only for a sequence
of past observations, instead of x(t), the true state at time t. In particular, we require
a sequence of observations for the sake of identifiability. Indeed, for general non-linear
systems, a single observation does not contain enough information to infer the state [7].

Error detection. The predictors h and g provide approximate solutions and, as
such, they can commit safety-critical prediction errors. Building on [4], we endow the
predictive monitor of Problem 1 and 2 with an error detection criterion Rej . This
criterion should be able to preemptively identify – and hence, reject – inputs where
the prediction is likely to be erroneous (in which case Rej evaluates to 1, 0 otherwise).
Rej should also be optimal in that it has minimal probability of errors in detection.
The rationale behind Rej is that uncertain predictions are more likely to lead to
prediction errors. Hence, rather than operating directly over inputs, s∈{x,ȳ}, the
detector Rej receives in input a measure of predictive uncertainty of f∈{h,g} about s.

Problem 3 (Uncertainty-based error detection). Given an approximate reachability
predictor f ∈ {h,g} for the system (Mdet,Fdet) and reachability specification of
Problem 1 and 2, and a measure of predictive uncertainty uf :S→UN over some
uncertainty domain U and over a space S∈{X,Y Hp} with distribution S∈{X ,Y},
find an optimal error detection rule, Rej f :U→{0,1}N , that minimizes the probability

Prst∼S

(
1
(
f(j)(st)≠Reach(j)(D,st,H)

)
≠Rej

(j)
f (u

(j)
f (st)) |j∈{1,...N}

)
.

Neural Predictive Monitoring for Collective Adaptive Systems 7

In the above problem, we consider all kinds of prediction errors, but the definition and
approach could be easily adapted to focus on the detection of a specific type of error,
e.g. on false negatives (the most problematic errors from a safety-critical viewpoint).

Statistical guarantees. The general goal of Problems 1, 2 and 3 is to minimize
the risk of making mistakes in predicting reachability and in predicting prediction
errors, respectively. We are also interested in establishing probabilistic guarantees on
the expected error rate, in the form of prediction regions guaranteed to include the
true reachability value with arbitrary probability.

Problem 4 (Probabilistic guarantees). Given the system and reachability specification
of Problem 1 and 2 find, for every output j∈{1,...,N}, a function Γ ϵ

f(j) :S→2{−1,1},

mapping an input st into a prediction region for the corresponding reachability value,
i.e., a region that satisfies, for any error probability level ϵ∈(0,1), the validity property
below

Prst∼S

(
Reach(j)(D,st,H)∈Γ ϵ

f(j)

(
st
))

≥1−ϵ.

Among the maps that satisfy validity, we seek the most efficient one, meaning the
one with the smallest, i.e. less conservative, prediction regions.

3.2 Stochastic dynamics

We now consider a CAS Mstoch evolving stochastically over a state space X and
over discrete time. Function Fstoch :X→XH describes the dynamics, over a temporal
horizon H, mapping a state x(t) to a random variable over the trajectory space XH,
Fstoch(x(t))=x(t1)···x(tH). A sample ξ∼Fstoch(x(t)) is nothing but a trajectory over
XH. The distribution of Fstoch(x(t)) can be empirically approximated by taking a
large number, P , of samples, ξ̄ :=(ξ1,...,ξP)∼Fstoch(x(t)). We evaluate the safety of
state x through a function StochReach(D,x,H)∈{−1,0,1}N , which outputs 1 if the
trajectories starting from x eventually reach D with probability higher than (1−α) (x
safe), −1 if D is reached with probability below α (x unsafe), 0 otherwise. These prob-
abilities can be derived with Monte-Carlo or numerical probabilistic model checking
techniques [13, 14]. Predictive monitoring of such a stochastic system (Mstoch,Fstoch)
corresponds to deriving a function that approximates StochReach(D,x,H) w.r.t. some
given distribution for x.

Problem 5 (Stochastic PM). Given an system (Mstoch,Fstoch) with state space X,
a distribution X over X, a time bound H and set of unsafe states D⊂X, find a
function hs :X→{−1,0,1}N that minimizes the probability

Prx∼X

(
hs(x)≠StochReach(D,x,H)

)
The uncertainty-based error detection rule of Problem 3 and the statistical

guarantees of Problem 4 are defined very similarly in the stochastic scenario. The
main differences are that the predictive errors of Problem 3 are now defined as

1
(
h
(i)
s (x)≠StochReach(i)(D,x,H)

)
for i∈{1,...,N} and the predictive region Γ ε

hs
of

Problem 4 is a function Γ ε
hs
:X→2{−1,0,1}N .

8 F. Cairoli et al.

3.3 Predictive Monitoring for BSS

Given a BSS modeled as in Section 2, we aim at predicting, from the current state
of the system, if a station i is about to get full, xSi =Ki, or if it is soon going to
be empty, xSi =0. The goal of predictive monitoring is to access this information in
advance, so that one can try to prevent undesirable events from happening, e.g. by
using a truck to transport bikes from one station to another.

Different scenarios, with increasing complexity, can be considered. Each station
constantly monitors the number of bikes available, so that measuring the number
of stationary bikes is straightforward. On the other hand, when a bike is in transit,
we have no exact information about where it is directed to.

We start by considering, a simplified scenario where we assume to have complete
knowledge about the state of each bike. We then consider the more realistic setting
in which no information about the state of transitioning bikes is available, so we must
predict the future reliability of the service only from partial information.

In terms of system dynamics, we start by predicting the service reliability based
on the deterministic evolution of the system, using the MF approximation. In this
scenario, a state x is labelled as unsafe if the deterministic trajectory, starting from
x, violates the requirement. It is labelled as safe otherwise.

We then move to a more complex scenario, where the stochasticity of the dy-
namics is preserved. Under these circumstances, a state x can be classified as safe,
unsafe or risky. It is safe if both the lower and upper bound trajectories satisfy
the requirement, unsafe if they both violate it and risky if only one of the bounds
violates the requirement. Notice that, potentially, one could extend this approach to
an arbitrary number of quantiles by adding a label for each quantile.

By doing so we can create a synthetic dataset by randomly sampling a pool of
n initial states, x1(t0)...,x

n(t0), and by letting the system evolve from each of these
states for a timeH. We then use the obtained trajectories to label them as safe, unsafe
or risky. As we have N stations, we are going to consider N different requirements,
each state thus is associated with N labels. In other words, we separately monitor
the future reliability of each station from the current state of the system. The dataset
can be summarized as

Z′={(si,ℓi)}ni=1, (3)

where s = x(t0) in case of full observability (FO) and s = xS(t0) in case of par-
tial observability (PO), whereas ℓi = (ℓ1i ,...,ℓ

N
i). If the dynamics is deterministic

ℓji ∈{safe,unsafe}. If the dynamics is stochastic ℓji ∈{safe,risky,unsafe}.

4 Uncertainty Quantification and Statistical Guarantees

In the following, we provide the necessary background on Conformal Prediction (CP),
the technique used to quantify the uncertainty and to obtain statistical guarantees over
the predictions, the two ingredients needed to solve Problem 3 and Problem 4 in both
the deterministic and the stochastic scenario. In the following, we provide an intuitive
explanation; we refer the interested reader to [7] for a more detailed description of
the procedure. The main difference is that CP is now addressing a multi-output
multi-class classification problem rather than a simple binary classification problem.

Neural Predictive Monitoring for Collective Adaptive Systems 9

4.1 Conformal Predictions for Multi-Output and Multi-Class
Classification

Conformal Prediction (CP) [1] is a very general approach that associates measures of
reliability to any traditional supervised learning problem. NPM for CAS, presented
in Section 3, deals with multi-output classification problems (Problem 1, 2 and 5).
We thus present the theoretical foundations of CP in relation to a generic multi-class
multi-output classification problem.

Let S be the input space, L= {l1,...,lc} be the set of labels (or classes), and
define Z=S×LN , where N is the number of outputs. The classification model is
represented as a function f :S→ [0,1]c×N mapping inputs into N vectors of class
likelihoods. For each output j, the class predicted by f(j) corresponds to the class
with the highest likelihood. In the context of NPM for CAS, the input space S can
be either X, under FO, or Y Hp, under PO, whereas labels L indicates the possible
reachability values (c= 2 in the deterministic version and c= 3 in the stochastic
version), and f∈{h,g,hs} is the predictor.

For a generic input si, we denote with ℓi=(ℓ1i ,...,ℓ
N
i) the vector of true labels for si

and with ℓ̂i the vector of labels predicted by f . Test points, whose true labels are un-
known, are denoted by s∗. The main ingredients of CP are: a set of labelled examples
Z′⊆Z, a classification model f trained on a subset of Z′, a nonconformity function
ncmf (j) :S×L→R and a statistical test. The nonconformity function ncmf (j)(si,ℓ

j
i)

measures the “strangeness” of an example (si,ℓ
j
i), i.e., the deviation between the

label ℓji and the corresponding prediction f(j)(si). For ease in the notation, let ncmj

denote the nonconformity function ncmf (j).

CP algorithm for multi-output classification. Given a set of examples Z′⊆Z, a test
input s∗∈S, and a significance level ε∈ [0,1], CP computes Γε,∗, a set of N prediction
regions.

1. Divide Z′ into a training set Zt, and calibration set Zc. Let q= |Zc| be the size
of the calibration set.

2. Train a model f using Zt.
3. Define a nonconformity function ncmj (si,ℓ

j
i)) for every output j∈{1,...,N}.

4. Apply the nonconformity measure to each example in Zc

Ac=
{{

αij=ncmj (si,ℓ
j
i) |j∈{1,...,c}

}
|(si,ℓi)∈Zc

}
and, for each output j∈{1,...N}, sort the nonconformity scores in descending
order: α1j≥···≥αqj.

5. For a test input s∗, compute the nonconformity scores w.r.t each output and
w.r.t. each possible class:

A∗=
{{

ncmj (s∗,l
k) |k∈{1,...,c}

}
|j∈{1,...,N}

}
.

Then, for j∈{1,...,N} and k∈{1,...,c} compute the respective smoothed p-value

p
(j,k)
∗ =

|{zi∈Zc :A
(i,j)
c >A

(j,k)
∗ }|

q+1
+θ

|{zi∈Zc :A
(i,j)
c =A

(j,k)
∗ }|+1

q+1
, (4)

10 F. Cairoli et al.

where θ∈U[0,1] is a tie-breaking random variable. Note that p
(j,k)
∗ represents the

portion of calibration examples whose j-th outputs are at least as nonconforming
as the tentatively labelled test example (s∗,l

k).
6. Return a set of N prediction regions (one per output)

Γε,∗=
{{

lk∈L :p
(j,k)
∗ >ε

}
|j∈{1,...,N}

}
. (5)

together with the p-values.

Note that in this approach, called inductive CP [11], steps 1–4 are performed only
once, while Steps 5–6 are performed for every test point s∗.

Statistical guarantees. The CP algorithm outputs prediction regions, instead of
single point predictions: given a significance level ε∈ (0,1) and a test point s∗, its

prediction region with respect to output j, Γ
(j)
ε,∗ ⊆L, is a set of labels guaranteed to

contain the true label ℓj∗ with probability 1−ε. The rationale is to use a statistical
test, more precisely the Neyman-Pearson theory for hypothesis testing and confidence
intervals [10], to check if (s∗, l

k) is particularly nonconforming compared to the
calibration examples. The unknown distribution of nonconformity scores, referred to
as Q, is estimated by applying ncmj to all calibration examples, set Ac (step 4). Then
the scores A∗ (step 5) are computed for every possible label and every output in order
to test for the null hypothesis A∗∼Q. The null hypothesis is rejected if the p-values
associated with A∗ are smaller than the significance level ε. If a label lk is rejected for
output j, meaning if it appears unlikely that ncmj (s∗,l

k)∼Q(j), we do not include

this label in Γ
(j)
ε,∗ . Therefore, given ε, the prediction region for each output contains

only those labels for which we could not reject the null hypothesis. In the stochastic
setting, our approach guarantees that there is a probability (w.r.t. sampling) of 1−ε
that our prediction region includes the correct StochReach value, i.e., whether the
(stochastic) system will reach D with probability above 1−α, below α or in-between.

Nonconformity function. A nonconformity function is well-defined if it assigns low
scores to correct predictions and high scores to wrong predictions. In multi-output
classification problems, a natural choice for ncmj , based on the underlying model f , is

ncmj (si,l
k)=1−Pf(j)(lk|si), (6)

where Pf(j)(lk|si) is the likelihood of class lk for output j when the model f is applied

on si. If f
(j) correctly predicts ℓji for input si, the corresponding likelihood Pf(j)(ℓ

j
i |si)

is high (the highest among all classes) and the resulting nonconformity score is low.
The opposite holds when f(j) does not predict ℓji . The nonconformity measure chosen
for our experiments, Eq. 6, preserves the ordering of the class likelihoods predicted
by f(j) for every output j.

Confidence and credibility. Observe that, for significance levels ε1 ≥ ε2, the corre-
sponding prediction regions are such that Γε1 ⊆Γε2. It follows that, given an input

Neural Predictive Monitoring for Collective Adaptive Systems 11

s∗ and an output j, if ε is lower than all its p-values, i.e. ε<mink=1,...,c p
(j,k)
∗ , then

the region Γ
(j)
ε,∗ contains all the labels. As ε increases, fewer and fewer classes will

have a p-value higher than ε. That is, the region shrinks as ε increases. In particular,

Γ
(j)
ε,∗ is empty when ε≥maxk=1,...,c p

(j,k)
∗ .

The confidence of a point s∗∈S w.r.t. output j, 1−γ
(j)
∗ , measures how likely our

prediction for s∗ is compared to all other possible classifications (according to the
calibration set). It is computed as one minus the smallest value of ε for which the
conformal region is a single label, i.e. the second largest p-value γ∗:

1−γ
(j)
∗ =sup{1−ε : |Γ (j)

ε,∗ |=1}.

Informally, the confidence of a prediction can be interpreted as the probability that
a prediction corresponds to the true label.

The credibility w.r.t. output j, κ
(j)
∗ , indicates how suitable the training data

are to classify that specific example. In practice, it is the smallest ε for which the
prediction region is empty, i.e. the highest p-value according to the calibration set,
which corresponds to the p-value of the predicted class:

κ
(j)
∗ =inf{ε : |Γ (j)

ε,∗ |=0}.

Intuitively, credibility quantifies how likely a given state is to belong to the same
distribution of the training data.

Uncertainty function. The higher 1−γ
(j)
∗ and κ

(j)
∗ are, the more reliable the predic-

tion ℓ̂j∗ is. Therefore, our uncertainty-based rejection criterion relies on excluding points

with low values of 1−γ
(j)
∗ and κ

(j)
∗ . We stress, in particular, the following statistical

guarantee: the probability that the true prediction for s∗ is exactly ℓ̂
j
∗ is at most 1−γ

(j)
∗ .

The uncertainty map uf used to quantify the predictive uncertainty of a predictor
f, introduced in Problem 3, is thus defined as

uf(s∗)={(γ(j)∗ ,κ
(j)
∗) |j∈{1,...,N}}.

4.2 Uncertainty-based Rejection Rule

Confidence and credibility measure how much a prediction can be trusted. Our goal is
to leverage these two measures of uncertainty to identify a criterion to detect errors of
the reachability predictor. The rationale is that every new input s is required to have
values of confidence, 1−γ, and credibility, κ, sufficiently high in order for the classifi-
cation to be accepted. However, determining optimal thresholds is a non-trivial task.

In order to automatically identify optimal thresholds, we proceed with an addi-
tional supervised learning approach. For this purpose, we introduce a cross-validation
strategy to compute values of confidence and credibility, using Zc as validation set.
For every output j, the cross-validation strategy consists of removing the i-th score,

A
(i,j)
c , in order to compute γ

(j)
i and κ

(j)
i , i.e. the p-values at si ∈Sc w.r.t. output

j, where Sc={s |(s,ℓ)∈Zc}. In this way, we can compute confidence, 1−γ(j), and

12 F. Cairoli et al.

credibility, κ(j), for every point in the calibration set. For each output j, the points of
the calibration set are then labelled with 1 or 0 depending on whether the classifier
f(j) makes a prediction error over that calibration point or not. We then solve N
binary classification problems by training N separate Support Vector Classifiers
(SVCs) over the calibration set. These SVC optimally solve Problem 3.

Rejection rule refinement. As already observed in [4], predictors with very high
accuracy result in over-conservative rejection rules. Intuitively, the reason is that since
the number of non-zero calibration scores is limited, the p-values are less sensitive to
changes in the nonconformity score. We here propose an output-specific refinement,

meaning that, for each output j, we add to A
(j)
c the points where f(j) predictions

where rejected by Rej (j). By doing so, we add calibration points with informative
non-zero calibration scores. However, in doing so we modify the data generation distri-
bution of the calibration set. Thus the statistical guarantees, meaning the prediction
regions, are computed w.r.t. the original calibration set.

Active learning. The rejection rule defined above can be used as an uncertainty-based
query strategy for an active learning approach, allowing the user to select the points
where the predictor f is performing poorly and then add them to the training set
to improve the performances of f.

5 Experiments

Implementation. The workflow can be divided into steps: (1) define the BSS models
for different architectures, (2) generate the synthetic datasets Z′ for both the deter-
ministic (both under FO or PO) and the stochastic version, (3) train the NPM-CAS,
(4) train the CP-based error detection rules and (5) evaluate NPM-CAS on a test
set. The technique is fully implemented in Python4. In particular, PyTorch [12] is
used to craft, train and evaluate the neural networks used to solve Problem 1, 2
and 5. The source code for all the experiments can be found at the following link:
https://github.com/francescacairoli/CAS_NPM.git

Datasets generation. We set the number of bikes in the system to M=100 for each
configuration. The training set consists of 20K points, the calibration set consists
of 10K points and the test set consists of 5K points. In the stochastic version, the
upper and lower bounds are computed over samples of 200 trajectories per point. We
define BSS networks with three different topologies with increasing dimensions, i.e.
larger number of bike stations, and thus increasing complexity.

– Triangular network – Fig. 1: 3 bike stations, departure rates λ1=0.25, λ2=0.2,
λ3=0.15, distances are set to 10, station capacity K is set to 35 for each station.

– Diamond network – Fig. 3 (left): 5 bike stations, departure rates λ=0.25, λa=0.2,
λb=0.15, distances are set to a=10 and b=12, station capacity K is set to 25
for each station.

4 The experiments were performed on a computer with a CPU Intel x86, 24 cores and
a 128GB RAM and 15GB of GPU Tesla V100.

Neural Predictive Monitoring for Collective Adaptive Systems 13

– Hexagon network – Fig. 3 (right): 7 bike stations, constant departure rates λ=0.2,
distances d=10, constant station capacity K=20.

Training details. A grid-search approach has been used to find the best performing
hyper-parameters under each configuration. In FO scenarios (both deterministic and
stochastic), we use a feed-forward neural network composed of five layers with 50
neurons each, LeakyReLU activations and drop-out with probability 0.1. The last
layer has a ReLU activation so to obtain positive likelihood scores that are fed into
a cross-entropy loss. The training is performed for 1000 epochs over batches of size
256, using Adam optimizer with a learning rate of 0.0005.

In the PO scenario, we use one-dimensional convolutional neural networks with N
channels, 128 filters of size 5, LeakyReLU activations and drop-out with probability
0.1. As before, the last layer has a ReLU activation and a cross-entropy loss. The
training is performed for 400 epochs over batches of size 256, using Adam optimizer
with a learning rate of 0.0005.

Fig. 3. Diamond and hexagon geometries.

Computational costs. NPM-CAS is designed to work at runtime which translates into
the need for high computational efficiency together with high reliability. The time
needed to generate the dataset and to train both methods does not affect the runtime
efficiency of the NPM-CAS, as it is performed only once (offline). Once trained, the
time needed to analyse the reachability of the current sequence of observations is the
time needed to evaluate the trained neural networks, which is almost negligible (in
the order of microseconds on GPU). On the other hand, the time needed to quantify
the uncertainty depends on the size of the calibration set. It is important to notice
that the percentage of points rejected, meaning points with predictions estimated to
be unreliable, affects considerably the runtime efficiency of the methods. Therefore,
we seek a trade-off between accuracy and runtime efficiency. The training phase
takes from 3 to 10 hours, whereas computing a single prediction takes less than 1
microseconds. Training each SVC takes from 1 to 10 seconds, whereas computing
values of confidence and credibility for a single point takes from 0.01 to 0.08 seconds.

Measures of performance. The measures used to quantify the overall performance of
the NPM-CAS are: the accuracy of the reachability predictor, the error detection rate

14 F. Cairoli et al.

and the rejection rate. We seek high accuracies and detection rates without being overly
conservative, meaning keeping a rejection rate as low as possible. We also check if and
when the statistical guarantees are met empirically, via values of coverage and efficiency.
Efficiency is measured as the percentage of singletons in the prediction regions. We
analyse and compare the performances of NPM-CAS on the three different BSS net-
work configurations – the triangular, the diamond and the hexagon network. For each
configuration, we compare the results of the deterministic version under the full observ-
ability assumption (Det-FO), the deterministic version under the partial observability
assumption (Det-PO) and the stochastic version assuming full observability (Stoch).

5.1 Results

Initial Results Refinement
Topology Version Acc. Rej. Det. Cov. Eff. Rej. Det.

Triangular Det-FO 99.20 8.47 88.93 95.17 95.26 6.87 85.14
Det-PO 98.24 11.93 96.87 95.35 95.75 9.40 94.48
Stoch 97.55 13.05 92.02 95.13 96.07 12.03 91.51

Diamond Det-FO 98.85 10.10 85.22 94.90 95.09 9.39 84.87
Det-PO 96.21 19.71 92.07 94.99 97.67 14.27 89.86
Stoch 96.38 18.12 87.05 95.16 97.92 15.93 86.21

Hexagon Det-FO 98.02 13.12 84.09 95.13 95.81 12.28 81.37
Det-PO 96.47 19.67 93.56 94.79 97.13 14.39 97.07
Stoch 95.37 26.35 88.64 95.19 98.14 20.53 81.50

Table 1. Average performances over the N bike stations. Acc. is the accuracy, Rej. and
det. denote respectively the rejection and the error detection rates, whereas Cov. and Eff.
respectively denote coverage and efficiency of the prediction regions (at level ε=0.05).

Table 1 summarizes the experimental results over the three different BSS topolo-
gies – triangular, diamond, and hexagon – and under the three different experimental
settings – Det-FO, Det-PO and Stoch. The first column (Acc.) shows how NPM-CAS
provides extremely accurate predictions, accuracies are always greater than 95%. In
particular, in Det-FO the accuracy is always greater than 98%, in Det-PO it is always
greater than 96% and in Stoch it is always greater than 95%.

In column Cov. we observe how the CP prediction regions meet the statistical
guarantees as the empirical coverage is close to the desired value of 95%. Moreover,
the prediction regions show rather high efficiencies – see Eff. column. Efficiencies
are always greater than 95%, meaning that there is no need for the CP predictor to
be over-conservative in order to meet the guaranteed coverage.

Table 1 also shows the performances of the CP-based error detection rule before
and after the refinement. We observe how the refinement of the error detection
rule always reduces the rejection rate but it also results in slightly lower detection
rates. In particular, on average over all the case studies, the rejection rate reduces
from 17.41% to 13.70%, whereas the detection rate reduces from 88.78% to 83.32%.
The reduction in the rejection rate is proportional to the reduction in the detection

Neural Predictive Monitoring for Collective Adaptive Systems 15

rate. This is most likely because the number of errors is rather small, resulting in
highly unbalanced datasets, even after the refinement process, making the error
detection phase extremely sensitive. Moreover, the refinement process changes the
data generating distribution of the calibration set, meaning that the CP statistical
guarantees no longer apply. Therefore, the refined solution is more efficient but less
conservative than the original one and thus, its application has to be chosen wisely
knowing the criticalities of the CAS at hand.

5.2 Discussion

Our results show great promise overall: the method attains very high accuracy lev-
els (ranging from 95.37% to 99.2%), provides statistical guarantees, and effectively
identifies and reject prediction errors. As expected, the performance is affected by
the complexity and the dimensionality of the problem, i.e., deterministic scenarios
with few agents outperform stochastic ones with a larger number of agents. As future
work, we plan to systematically evaluate the scalability of our NPM approach with
respect to the complexity and the dimensionality of the CAS at hand.

Moreover, our current approach handles the stochastic setting by partitioning the
range of reachability probabilities into three regions, safe ([0,α]), unsafe ([1−α,1]),
and “indifference” (α,1−α), and predicting one of these segments (a classification
problem). While the method can be easily extended to support arbitrary probability
partitions, a next step will be to develop a quantitative approach that directly pre-
dicts reachability probabilities rather than categorical values (a regression problem).
Another open problem is dealing with partial observability in stochastic systems
where state identifiability remains an issue.

Finally, a natural extension would be to apply NPM-CAS to more realistic BSS
topologies, e.g., the London BSS or any other cities that make such data available.

6 Conclusions

In this paper, we presented NPM-CAS an extension of the neural predictive monitor-
ing technique to collective adaptive systems with variable complexity. In particular,
NPM-CAS works both on CAS with deterministic dynamics, under either full or
partial observability, and on CAS with stochastic dynamics. The technique is exper-
imentally tested on a bike-sharing system with network topologies with increasing
complexity. Results are promising, predictions are extremely accurate and computa-
tionally efficient, thereby enabling the deployment of predictive monitoring at runtime
on embedded devices with limited computational power.

References

1. Balasubramanian, V., Ho, S.S., Vovk, V.: Conformal prediction for reliable machine
learning: theory, adaptations and applications. Newnes (2014)

2. Bortolussi, L.: Hybrid limits of continuous time markov chains. In: 2011 Eighth
International Conference on Quantitative Evaluation of SysTems. pp. 3–12. IEEE (2011)

16 F. Cairoli et al.

3. Bortolussi, L.: Hybrid behaviour of markov population models. Information and
Computation 247, 37–86 (2016)

4. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive moni-
toring. In: International Conference on Runtime Verification. pp. 129–147. Springer (2019)

5. Bortolussi, L., Cairoli, F., Paoletti, N., Smolka, S.A., Stoller, S.D.: Neural predictive
monitoring and a comparison of frequentist and bayesian approaches. International
Journal on Software Tools for Technology Transfer 23(4), 615–640 (2021)

6. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: A tutorial. Performance Evaluation 70(5), 317–349 (2013)

7. Cairoli, F., Bortolussi, L., Paoletti, N.: Neural predictive monitoring under partial
observability. In: International Conference on Runtime Verification. pp. 121–141.
Springer (2021)

8. Gillespie, D.T., Petzold, L.: Numerical simulation for biochemical kinetics. Systems
Modelling in Cellular Biology pp. 331–354 (2006)

9. Le Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: Fourth international conference on the
quantitative evaluation of systems (QEST 2007). pp. 3–18. IEEE (2007)

10. Lehmann, E.L., Romano, J.P.: Testing statistical hypotheses. Springer Science &
Business Media (2006)

11. Papadopoulos, H.: Inductive conformal prediction: Theory and application to neural
networks. In: Tools in artificial intelligence. InTech (2008)

12. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In: NIPS-W (2017)

13. Younes, H.L., Simmons, R.G.: Statistical probabilistic model checking with a focus
on time-bounded properties. Information and Computation 204(9), 1368–1409 (2006)

14. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with appli-
cation to simulink/stateflow verification. In: Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control. pp. 243–252 (2010)

