
International Journal on Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Neural Predictive Monitoring and a Comparison of Frequentist and
Bayesian Approaches

Luca Bortolussi · Francesca Cairoli · Nicola Paoletti · Scott A. Smolka ·
Scott D. Stoller

Received: date / Accepted: date

Abstract Neural State Classification (NSC) is a recently
proposed method for runtime predictive monitoring of Hy-
brid Automata (HA) using deep neural networks (DNNs).
NSC trains a DNN as an approximate reachability predic-
tor that labels an HA state x as positive if an unsafe state
is reachable from x within a given time bound, and labels
x as negative otherwise. NSC predictors have very high ac-
curacy, yet are prone to prediction errors that can negatively
impact reliability. To overcome this limitation, we present
Neural Predictive Monitoring (NPM), a technique that com-
plements NSC predictions with estimates of the predictive
uncertainty. These measures yields principled criteria for the
rejection of predictions likely to be incorrect, without know-
ing the true reachability values. We also present an active
learning method that significantly reduces the NSC predic-
tor’s error rate and the percentage of rejected predictions.
We develop two versions of NPM based respectively on the
use of frequentist and Bayesian techniques to learn the pre-
dictor and the rejection rule. Both versions are highly effi-
cient, with computation times on the order of milliseconds,
and effective, managing in our experimental evaluation to
successfully reject almost all incorrect predictions. In our
experiments on a benchmark suite of six hybrid systems,
we found that the frequentist approach consistently outper-
forms the Bayesian one. We also observed that the Bayesian

Luca Bortolussi · Francesca Cairoli
Department of Mathematics and Geosciences, Università di Trieste,
Italy

Luca Bortolussi
Modelling and Simulation Group, Saarland University, Germany

Nicola Paoletti
Department of Computer Science, Royal Holloway, University of Lon-
don, UK

Scott A. Smolka · Scott D. Stoller
Department of Computer Science, Stony Brook University, USA

approach is less practical, requiring a careful and problem-
specific choice of hyperparameters.

Keywords predictive monitoring, runtime verification,
hybrid automata reachability, neural networks, conformal
prediction, Bayesian inference

1 Introduction

Hybrid systems are a central model for many safety-critical,
cyber-physical system applications [3]. Their verification typ-
ically amounts to solving a hybrid automata (HA) reachabil-
ity checking problem [33]: given a modelM of the system
expressed as an HA, a set I of initial states ofM, and a set
D of unsafe states, check whether D is reached along any
(time-bounded) path ofM starting from a state in I . Due to
its high computational cost, reachability checking is usually
limited to design-time (offline) analysis.

Our focus is on the online analysis of hybrid systems
and, in particular, on the predictive monitoring (PM) prob-
lem [21]; i.e., the problem of predicting, at runtime, whether
or not an unsafe state can be reached from the current system
state within a given time bound. PM is at the core of archi-
tectures for runtime safety assurance such as Simplex [54],
where the system switches to a certified-safe baseline con-
troller whenever PM indicates the potential for an imminent
safety violation.

In such approaches, PM is invoked periodically and fre-
quently. Thus, reachability needs be determined rapidly, from
a single state (the current system state), and typically for
short time horizons. This is in contrast with offline reacha-
bility checking, where long or unbounded time horizons and
sizable regions of initial states are typically considered. PM
also differs from traditional runtime verification [10] in that
PM is preemptive: it detects potential safety violations be-
fore they occur, not when or after they occur.

2 L. Bortolussi et al.

Any solution to the PM problem involves a tradeoff be-
tween two main requirements: accuracy of the reachabil-
ity prediction, and computational efficiency, as the analysis
must execute within strict real-time constraints and typically
with limited hardware resources.

In this paper, we present Neural Predictive Monitoring
(NPM), a machine-learning-based approach to PM that pro-
vides highly accurate predictions in a highly efficient man-
ner. Moreover, NPM offers principled methods for detecting
potential prediction errors, which significantly enhances the
reliability of PM estimates.

NPM builds on Neural State Classification (NSC) [46], a
recently proposed method for approximate HA reachability
checking using deep neural networks (DNNs). NSC works
by training a DNN as a state classifier using examples com-
puted with an oracle (an HA model checker). For any state
x of the HA, such a classifier labels x as positive if an un-
safe state is reachable from x within a given time bound;
otherwise, x is labeled as negative.

Executing a neural state classifier corresponds to com-
puting the output of a DNN for a single input, and thus is
extremely efficient. NSC has also demonstrated very high
accuracy in reachability predictions, owing to the power-
ful approximation capabilities of DNNs. Some classification
errors are, however, unavoidable, the most important being
false negatives, in which positive states are misclassified as
negative. Such errors may compromise system safety.

NPM overcomes this problem by extending NSC with
rigorous methods for quantifying the uncertainty of the reach-
ability estimates. NPM can consequently identify and reject
predictions that are likely to produce classification errors.
We investigate two alternative NPM methods: a frequen-
tist approach that uses Conformal Prediction (CP) [59], a
method that provides statistical guarantees on the predic-
tions of machine-learning models with minimal assumptions
on the data;1 and a Bayesian approach that leverages uncer-
tainty quantification via Bayesian neural networks (BNNs),
rather than traditional (deterministic) DNNs. We consider
two popular Bayesian inference methods: Hamiltonian Monte
Carlo [41] and Variational Inference [36].

Figure 1 provides an overview of the NPM approach. We
sample from a distribution of HA states to generate a train-
ing set Zt and a validation set Zv . An HA reachability oracle
(a model checker or, for deterministic systems, a simulator)
is used to label sampled states as positive or negative. A neu-
ral state classifier F (i.e., a DNN-based binary classifier) is
derived from Zt via supervised learning, and is either a de-
terministic Neural Network (in the frequentist approach) or
a Bayesian Neural Network (in the Bayesian approach).

In the frequentist case, CP is used to estimate two statis-
tically sound measures of prediction uncertainty: confidence

1 The only assumption is exchangeability, a weaker version of the
independent and identically distributed assumption.

State distribution
+

Reachability oracle

Training set
𝑍"

Validation set
𝑍#

Neural State
Classifier 𝐹

Uncertainty
quantification

Error detection
criterion

Active
Learning

Fig. 1: Overview of the NPM framework. Double-bordered compo-
nents denote extensions to the method of [46]. Training of the neural
state classifier F and retraining via active learning are performed of-
fline. The only components used at runtime are the classifier F and the
error-detection criterion.

and credibility. Informally, the confidence of a prediction is
the probability that a reachability prediction for an HA state
x corresponds to the true reachability value of x. Credibility
quantifies how likely a given state is to belong to the same
distribution of the training data. In the Bayesian case, we use
an empirical approximation of the BNN output distribution
and, to be precise, statistics of said distribution to quantify
the model uncertainty about a specific HA state.

The measures described above, henceforth referred to as
uncertainty measures, are used to derive criteria for error de-
tection, i.e., for rejecting NSC predictions that are likely to
be erroneous. The rejection criterion is based on identifying,
via supervised learning on the validation set Zv , a decision
rule that optimally separates incorrect and correct predic-
tions. We again consider both a frequentist and a Bayesian
approach, deriving a Support Vector Classifier for the for-
mer, and a Gaussian Process Classifier for the latter.

Executing a Neural Predictive Monitor corresponds to:
(i) computing the output of a DNN, either deterministic or
Bayesian, on a single input; (ii) computing the correspond-
ing measure of uncertainty, whose computational cost de-
pends on the size of the validation set for the frequentist
case, and on the sample size used for the empirical distri-
bution of the BNN for the Bayesian case; (iii) evaluate the
rejection rule on the measure of uncertainty obtained via
step (ii). For all of the approaches we consider, this whole
process is very efficient, taking from 2 milliseconds to 0.3 sec-
onds in our experiments. This makes our NPM method suit-
able for online analysis and PM.

Finally, our approach includes an active learning strat-
egy to improve the reliability of the state classifier F . The
idea is to employ the uncertainty-based rejection criterion to
identify HA states for which F yields uncertain predictions,
and augment the training and validation sets with those states.
We then train a new state classifier with the augmented dataset,
thus ensuring improved accuracy on the HA states where F
performed poorly, and, in turn, a reduced rejection rate.

Compared to simple random sampling of the state dis-
tribution, our active learning strategy has the advantage of
parsimony: by focusing on the states with uncertain predic-

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 3

tions, it requires a significantly smaller number of additional
retraining samples to achieve a given reduction in the rejec-
tion rate, and thus significantly reduces the cost of retrain-
ing. The active learning procedure can be iterated, as shown
in Figure 1. We stress that these retraining iterations are part
of the training process, which is performed offline and hence
does not affect runtime performance.

In summary, the main contributions of this work are the
following:

– We develop Neural Predictive Monitoring, a framework
for runtime predictive monitoring of hybrid automata
that extends neural state classification with quantifica-
tion of prediction reliability.

– We instantiate the NPM framework in two variants, which
respectively use frequentist and Bayesian learning tech-
niques. For both approaches, we derive optimal criteria
for rejecting unreliable NSC predictions by leveraging
sound measures of prediction uncertainty.

– We develop an active learning method designed to re-
duce both prediction errors and the rejection rate.

– We evaluate our method on six hybrid automata case
studies, demonstrating that our optimal rejection crite-
ria successfully rejects almost all prediction errors, with
100% of the errors recognized in 5 out of 6 case studies
for the frequentist method. Moreover, only a single ac-
tive learning iteration is needed to significantly increase
the prediction accuracy and reduce the rejection rate.

– With our analysis and experimental comparison of fre-
quentist and Bayesian variants of NPM, we show that the
frequentist approach empirically outperforms the Bayes-
ian one on all relevant metrics. Furthermore, the fre-
quentist techniques require minimal assumptions and tun-
ing, which makes them more practical. In contrast, Bayes-
ian inference requires tuning of a number of hyperpa-
rameters, including the prior distribution for the DNN
weights. If the hyperparameters are not optimally tuned,
the performance may be extremely poor.

This work is an extended version of [15], where we first
introduced the NPM method, but only the frequentist ver-
sion. Here, we introduce a fully Bayesian variant of NPM,
and compare the two versions in a new experimental eval-
uation section. In this version of the paper, we also include
a more extensive treatment of the problem formulation and
the NPM method itself.

The paper is structured as follows. Section 2 presents
a rigorous formulation of the problem. Section 3 provides
background on neural state classification and on the meth-
ods used to estimate predictive uncertainty. The uncertainty-
based error detection rules are presented in Section 4. Sec-
tion 5 presents the active learning algorithm. Results of the
experimental evaluation are given in Section 6. Related work
is discussed in Section 7. Section 8 offers concluding re-
marks.

2 Problem Formulation

We describe the predictive monitoring problem for hybrid
automata reachability and the related problem of finding an
optimal criterion for rejecting erroneous reachability predic-
tions.

Definition 1 (Hybrid automaton) A hybrid automaton (HA)
is a tupleM = (Loc, Var , Init ,Flow ,Trans, Inv), where
Loc is a finite set of discrete locations (or modes); Var =

{v1, . . . , vn} is a set of continuous variables, evaluated over
a continuous domain V ⊆ Rn; Init ⊆ S(M) is the set of
initial states, where S(M) = Loc × V is the state space of
M; Flow : Loc → (V → V) is the flow function, defining
the continuous dynamics at each location; Trans is the tran-
sition relation, consisting of tuples of the form (l, g, r, l′),
where l, l′ ∈ Loc are source and target locations, respec-
tively, g ⊆ V is the guard, and r : V → V is the reset;
Inv : Loc → 2V is the invariant at each location.

We also consider parameterized HA in which the flow,
guard, reset and invariant may have parameters whose val-
ues are constant throughout an execution. We treat parame-
ters as continuous variables with flow equal to zero and iden-
tity reset map. The behavior of an HAM can be described
in terms of its trajectories. A trajectory may start from any
state; it does not need to start from an initial state. For time
bound T ∈ R≥0, we denote with T = [0, T] ⊆ R≥0 the
time domain.

Definition 2 (Trajectory [6]) For HAM = (Loc,Var, Init,
Flow,Trans, Inv), time domain T = [0, T], let ρ : T →
S(M) be a function mapping time instants into states of
M. For t ∈ T, let ρ(t) = (l(t), v(t)) be the state at time
t, with l(t) being the location and v(t) the vector of contin-
uous variables. Let (ξi)i=0,...,k ∈ Tk+1 be the ordered se-
quence of time points where mode jumps happen, i.e., such
that ξ0 = 0, ξk = T , and for all i = 0, . . . , k − 1 and for all
t ∈ [ξi, ξi+1), l(t) = l(ξi). Then, ρ is a trajectory ofM if
it is consistent with the invariants: ∀t ∈ T. v(t) ∈ Inv(l(t));
flows: ∀t ∈ T. v̇(t) = Flow(l(t))(v(t)); and transition re-
lation: ∀i < k. ∃(l(ξi), g, r, l(ξi+1)) ∈ Trans. v(ξ−i+1) ∈
g ∧ v(ξi+1) = r(v(ξ−i+1)).

Example 1 (Spiking neuron HA) This model describes the
evolution of a neuron’s action potential. It is a deterministic
HA with two continuous variables, one mode, one jump and
nonlinear polynomial dynamics, defined by the ODE

{
v̇2 = 0.04v22 + 5v2 + 140− v1 + I

v̇1 = a · (b · v2 − v1)
(1)

The jump condition is v2 ≥ 30, and the associated reset
is v′2 := c ∧ v′1 := uv1 + d, where, for any variable x, x′

4 L. Bortolussi et al.

denotes the value of x after the reset. We consider the un-
safe set D defined by v2 ≤ 68.5, expressing that the neuron
should not undershoot its resting potential. The parameter
values are given in Appendix C..

Reachability checking of HA is concerned with estab-
lishing whether, given an initial HA state x and a set of tar-
get states D – typically a set of unsafe states to avoid – the
HA admits a trajectory starting from x that reaches D.

Definition 3 (Time-bounded reachability) Given an HA
M with state space X , a set of states D ⊆ X , state x ∈ X ,
and time bound T , decide whether there exists a trajectory
ρ ofM starting from x and t ∈ [0, T] such that ρ(t) ∈ D,
denotedM |= Reach(D,x, T).

We aim to derive a predictive monitor for HA reachabil-
ity, i.e., a function that can predict whether or not a state in
D (an unsafe state) can be reached from the current system
state within time T . In solving this problem, we assume a
distribution X of HA states and seek the monitor that pre-
dicts HA reachability with minimal error probability w.r.t.
X . The choice of X depends on the application at hand and
can include a uniform distribution on a bounded state space
or a distribution reflecting the density of visited states in
some HA executions [46].

Problem 1 (Predictive monitoring for HA reachability)
Given an HAM with state space X , a distribution X over
X , a time bound T and set of unsafe states D ⊆ X , find a
function F ∗ : X → {0, 1} that minimizes the probability

Prx∼X (F ∗(x) 6= 1(M |= Reach(D , x ,T))),

where 1 is the indicator function. A state x ∈ X is called
positive w.r.t. a predictor F : X → {0, 1} if F (x) = 1.
Otherwise, x is called negative (w.r.t. F).

Any practical solution to the above PM problem must
also assume a space of functions within which to restrict
the search for the optimal predictive monitor F ∗. Following
the neural state classification method of [46], in this work
we consider functions described by deep neural networks
(DNNs)2. Finding F ∗, i.e., finding a function approxima-
tion with minimal error probability, is indeed a classical ma-
chine learning problem, a supervised classification problem
in particular, with F ∗ being the classifier, i.e., the function
mapping HA state inputs x into one of two classes: 1 (x is
positive, can reachD) and 0 (x is negative, cannot reachD).

Machine learning classifiers often admit an underlying
discriminant function, which is used to determine the final
classifier output. In neural networks, the discriminant is the
function mapping inputs into the class likelihoods (i.e., the
softmax probabilities of the last network layer), such that the
predicted class is the one with the highest likelihood.

2 In [46], the PM problem is called “state classification problem”,
and its solution a “state classifier”.

Definition 4 (Discriminant function) Let Y = {y1, . . . , yc}
be a set of classes. A function f : X → [0, 1]c is a discrim-
inant for a classifier F : X → Y iff for any input x ∈ X ,
F (x) ∈ argmaxyi∈Y fi(x), where fi(x) is the i-th compo-
nent of f(x).

Remark 1 If argmaxyi∈Y fi(x) contains more than one class,
then the discriminant implies multiple possible predictions
for x. To avoid this ambiguity, we will assume that f is
always well-defined, meaning that argmaxyi∈Y fi(x) is a
singleton, and thus, only one prediction is possible for the
classifier F . Any discriminant can be made well-defined by,
for instance, imposing a total ordering on the classes to se-
lect in such ambiguous cases and adequately adjusting the
discriminant output3.

In what follows, we will interchangeably use the term “(reach-
ability) predictor” for the classifier F and for its discrimi-
nant f . Likewise, we will also call F a state classifier, and
in particular, neural state classifier (NSC) when its discrim-
inant f is described by a deep neural network. Below we
provide a definition of discriminant based on feed-forward
neural networks.

Definition 5 (Deep Neural Network discriminant) A DNN-
based discriminant over c classes can be defined as a func-
tion fw : X → [0, 1]c of the form:

fw = fL ◦ fL−1 ◦ . . . ◦ f1 ◦ f0,

where L is the number of hidden layers, ◦ is the function
composition operator, f0 is the input standardization func-
tion and, for i = 1, . . . , L, fi is the function computed by
the i-th layer. In particular, fL is a function mapping the out-
put of layer L− 1 to [0, 1]c.

Let ni indicate the number of neurons in layer i and let
oi−1 ∈ Rni−1 be the output vector of layer i−1. The output
of layer i results from applying function fi : Rni−1 → Rni
to the output of the previous layer:

fi (oi−1) = ai (wi,i−1 · oi−1 + bi) , i = 1, . . . , l (2)

where wi,i−1 ∈ Rni×ni−1 is the weight matrix that connects
oi−1 to the neurons of layer i, bi ∈ Rni is the bias vector
of layer i, and ai is the activation function of the neurons of
layer i. Weights and biases are the parameters learned during
training.

3 Any discriminant f can be turned into a well-formed one by
f ′(x) = {f(x) if |Ymax| = 1; (f(x) + 0k 7→ε)/(1+ ε) otherwise},
where Ymax = argmaxyi∈Y fi(x), ε ∈ R+, k = maxyi∈Ymax

i
(based on the ordering on Y) and 0k 7→ε ∈ Rc is a vector whose com-
ponents are all zeros but the k-th component equals to ε.

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 5

Training set. In supervised learning, one minimizes a mea-
sure of the empirical prediction error w.r.t. a training set. In
our case, the training set Z ′ is obtained from a finite sample
X ′ of X by labelling the training inputs x ∈ X ′ using some
reachability oracle, that is, a hybrid automata reachability
checker like [31,20,2,14]. Hence, given a sample X ′ of X ,
the training set is defined by

Z ′ = {(x,1 (Reach(D,x, T)) | x ∈ X ′}.

Prediction errors. It is well known that neural networks are
universal approximators, i.e., they are expressive enough to
approximate arbitrarily well the output of any measurable
mathematical function [34]. Even though arbitrarily high pre-
cision might not be achievable in practice, state-of-the-art
optimization methods based on gradient descent via back-
propagation [52] can effectively learn highly accurate neu-
ral network approximators. However, such methods cannot
completely avoid prediction errors (no supervised learning
method can). Therefore, we have to deal with predictive mon-
itors F that are prone to prediction errors, which are of two
kinds:

– false positives (FPs), when, for a state x ∈ X , F (x) = 1

(x is positive w.r.t. F) butM 6|= Reach(D,x, T), and
– false negatives (FNs), when F (x) = 0 (x is negative

w.r.t. F) butM |= Reach(D,x, T).

These errors are respectively denoted by predicates fn(x)

and fp(x). In what follows we consider general kinds of pre-
diction error, described by predicate pe(x), and defined by
any arbitrary combination of fn(x) and fp(x).

Remark 2 (Feature space and state space) . Neural networks
only admit inputs from some vector space ⊆ Rn, which is
also called feature space. However, the state space X of
a hybrid automaton is not a vector space as it is given by
X = Loc × V , where Loc is the finite set of HA locations
and V is the domain of the continuous HA variables (see
Definition 1). To this purpose, for x = (l, v) ∈ X , we apply
the (straightforward) vector embedding (l, v) 7→ [#(l) v]T ,
where # : Loc → R is a suitable injection (a typical choice
is assigning an ordinal value to each HA location). In what
follows, we keep this vector embedding implicit and work
directly with inputs over X .

2.1 Uncertainty-based error detection

A central objective of this work is to derive, given a predic-
tor f , a rejection criterion Rf able to identify states x that
are wrongly classified by F , i.e., FNs and FPs or any com-
bination of the two, without knowing the true reachability
value of x. Further, Rf should be optimal, that is, it should
ensure minimal probability of rejection errors w.r.t. the state

distribution X . For this purpose, we propose to utilize infor-
mation about the reliability of reachability predictions, so
as to detect and reject potentially erroneous (i.e., unreliable)
predictions.

Our solution relies on enriching each prediction with a
measure of predictive uncertainty: given f , we define a func-
tion uf : X → U mapping an HA state x ∈ X into some
measure uf (x) of the uncertainty of f about x. The set U
is called uncertainty domain. Defining uf and U is a non-
trivial task, details are provided in Section 3. The only re-
quirements are that uf is point-specific and should not use
any knowledge about the true reachability value. Once de-
fined, uf can be used to build an optimal error detection
criterion, as explained below.

Problem 2 (Uncertainty-based error detection) Given a
reachability predictor f , a distribution X over HA states X ,
a predictive uncertainty measure uf : X → U over some
uncertainty domain U , and a kind of error pe find an optimal
error detection rule G∗f,pe : U → {0, 1}, i.e., a function that
minimizes the probability

Prx∼X (pe(x) 6= G∗f ,pe(uf (x))).

Note that Problem 2 requires specifying the kind of predic-
tion errors to reject. Indeed, depending on the application at
hand, one might desire to reject only a specific kind of er-
rors. For instance, in safety-critical applications, FNs are the
most critical errors while FPs are less important.

As for Problem 1, we can obtain a sub-optimal solution
Gf,pe to Problem 2 by expressing the latter as a supervised
learning problem, where the inputs are, once again, sam-
pled according to X and labelled using a reachability oracle.
We call validation set the set of labelled observations used
to learn Gf,pe. These observation need to be independent
from the above introduced training set Z ′, i.e., those used to
learn the reachability predictor f . In the simplest scenarios,
learning Gf,pe reduces to identifying an optimal threshold.
However, the proposed supervised learning solution is capa-
ble of identifying complex and multi-dimensional decision
boundaries in an automatic fashion, making it suitable also
for complex scenarios.

For an error pe, the final rejection rule Rf,pe for detect-
ing HA states where the reachability prediction should not
be trusted, and thus rejected, is readily obtained by the com-
position of the uncertainty measure and the error detection
rule

Rf,pe = Gf,pe ◦ uf : X → {0, 1},

where Rf,pe(x) = 1 if the prediction on state x is rejected;
Rf,pe(x) = 0, otherwise. We remark that rejection rules for
different kinds of errors could be combined together to ex-
press more sophisticated criteria.

6 L. Bortolussi et al.

List of notation

F (f) reachability predictor (NSC) (and
its discriminant)

uf uncertainty function for f
Gf (gf) error detection function for f (and

its discriminant)
Rf rejection function for f
X (X) HA state space (and its distribution)
D set of unsafe states
Y set of possible reachability values
Z = X × Y (Z) data domain (and its distribution)
U (UF , UB) uncertainty domain (frequentist,

Bayesian versions)
pe, fn, fp type of prediction errors
Zt, Zv , Zc training, validation, calibration

datasets
Zat , Zav , Zac augmented training, validation, cal-

ibration datasets in active learning
Uv uncertainty measures for f over Zv
Ev error labels for f over Zv
Wv training set for the error detection

function Gf

3 Uncertainty quantification in Neural Predictive
Monitoring

We explore two approaches to quantify the uncertainty pro-
duced by a neural network-based reachability predictor f ,
i.e., to derive the uncertainty measures uf introduced in Sec-
tion 2.1.

The first approach, referred to as the frequentist approach,
is based on Conformal Prediction [59,43,8]. The second
one, referred to as the Bayesian approach, relies on Bayesian
learning and employs probability distributions to express and
measure uncertainty. In particular, we leverage the theory of
Bayesian Neural Networks [13], which combines neural net-
works and probabilistic modeling.

We present the two uncertainty quantification approaches
for a generic classification problem, where we consider an
input spaceX , a set of classes Y = {y1, . . . , yc}, and a clas-
sifier F : X → Y with discriminant f : X → [0, 1]c. For an
input x, we will use the notation ŷ as a shorthand for F (x),
the classifier prediction on x. We define the data domain by
Z = X × Y , and we denote with Z the distribution of the
data over Z.

In the context of PM of HA reachability, X is the HA
state space, Y = {0, 1} (c = 2) is the set of possible reach-
ability values, Z = Prx∼X (x,1(Reach(D,x, T))), where
X is the distribution of HA states and Reach(D,x, T) is the
reachability specification, and F is the reachability predic-
tor, i.e., a (sub-)optimal solution of Problem 1.

3.1 Conformal Prediction

Conformal Prediction (CP) is a technique that associates
measures of reliability to any traditional supervised learn-
ing model. It is a very general approach that can be applied
across all existing classification and regression methods [59,
43,8]. CP produces prediction regions instead of single point
predictions: given a significance level ε ∈ (0, 1) and a test
point x∗, its prediction region, Γ ε∗ ⊆ Y , is a set of classes
that are guaranteed to contain the true class y∗ with proba-
bility 1− ε, i.e.,

Pr(x∗,y∗)∈Z(y∗ ∈ Γ
ε
∗) ≥ 1− ε.

The CP method requires defining a so-called nonconformity
function (NCF) h : Z → R: given a predictor f and an
example z = (x, y), h(z) measures the “strangeness” of z,
i.e., the deviation between the label y and the corresponding
prediction f(x). The definition of a suitable NCF for our
problem is discussed later. Now consider the distribution of
NCF scores induced by the data distribution Z and the pre-
dictor f :

H = Pr(x,y)∼Z(h(x, y)).

Note thatH precisely captures the distribution of the dis-
tances between true classes and corresponding predictions.
The rationale behind CP is to construct the prediction region
by “inverting” a suitable hypothesis test: given a test point
x∗ and a tentative class yj ∈ Y , we exclude yj from the pre-
diction region only if it appears unlikely that the NCF score
h(x∗, y

j) is distributed according to H, which implies that
it is not likely that yj is the true class. In other words, for
each yj ∈ Y , we perform the following hypothesis test:

H0 : h(x∗, y
j) ∼ H against Ha : h(x∗, y

j) 6∼ H,

and include in Γ ε∗ all the yj values for which we fail to reject
the null hypothesisH0 at significance level ε (this is what we
mean by “inverting the test”). In particular, H0 is rejected if

Prα∼H(α ≥ h(x∗, yj)) < ε, (3)

i.e., if the probability of observing a data point that is more
“non-conforming” than (x∗, y

j) is below ε. This probability
is called p-value in statistical jargon.

Note that exact derivation of H is intractable, as it re-
quires integration of h, which depends on the classifier and
thus is typically non-linear, over Z , a distribution that is sel-
dom given in explicit form (but only empirically, through a
set of observations). Therefore, we use instead an empirical
approximation of H, derived by computing the NCF scores
of a finite sample Zc of Z independent of the training set
used to learn the predictor f . We call Zc the calibration set.
This approach is called inductive CP [43]. We summarize it
in the algorithm below.

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 7

CP algorithm for classification. Given a sample Z ′ of Z , a
test input x∗ ∈ X , and a significance level ε ∈ (0, 1), CP
computes a prediction region Γ ε∗ for x∗ as follows.

1. Divide Z ′ into a training set Zt and a calibration set Zc.
2. Train a predictor f using Zt.
3. Define a NCF h : Z → R.
4. Apply h(z) to each example z in Zc and sort the result-

ing NCF scores {α = f(z) | z ∈ Zc} in descending
order: α1 ≥ · · · ≥ α|Zc|.

5. Compute the NCF scores αj∗ = h(x∗, y
j) for the test

input x∗ and each possible class label j ∈ {1, . . . , c}.
Then, compute the smoothed p-value

pj∗ =
|{zi ∈ Zc : αi > αj∗}|

|Zc|+ 1
+θ
|{zi ∈ Zc : αi = αj∗}|+ 1

|Zc|+ 1
,

(4)

where θ ∈ U [0, 1] is a tie-breaking random variable.
Note that pj∗ is the portion of calibration examples that
are at least as nonconforming as the tentatively labelled
test example (x∗, y

j), i.e., an empirical approximation
of the p-value of Equation 3.

6. Return the prediction region

Γ ε∗ = {yj ∈ Y : pj∗ > ε}. (5)

together with the vector (p1∗, . . . , p
c
∗) of p-values, one for

each class.

Note that steps 1–4 are performed only once, while steps
5–6 are performed for each test point x∗.

Nonconformity function. A NCF function is well-defined if
it assigns low scores to correct predictions and high scores
to wrong predictions. A natural choice for h, based on the
discriminant model f , is h(z) = ∆(f(xi), yi), where ∆ is
a suitable distance4. Recall that, for an input x ∈ X , the
output of f is a vector of class likelihoods, which we denote
by f(x) = [f1(x), . . . , fc(x)]. In classification, a common
well-defined NCF function is given by setting

∆(f(x), y) = 1− fy(x), (6)

where fy(x) is the likelihood of class y when the predictor
f is applied on x. If F correctly predicts y for input x, the
corresponding likelihood fy(x) is high (the highest among
all classes, see Definition 4) and the resulting NCF score
is low. The opposite holds when F does not predict y. The
NCF measure chosen for our experiments, Equation 6, pre-
serves the ordering of the class likelihoods predicted by f .

4 The choice of ∆ is not very important, as long as it is symmetric.

Prediction uncertainty. A CP-based prediction region pro-
vides a set of plausible predictions with statistical guaran-
tees, and as such, also captures the uncertainty about the
prediction. Indeed, if CP produces a region Γ ε∗ with more
than one class, then the prediction for x∗ is ambiguous (i.e.,
multiple predictions are plausible), and thus, potentially er-
roneous. Similarly, if Γ ε∗ is empty, then there are no plau-
sible predictions at all, and thus, none can be trusted. The
only reliable prediction is the one where Γ ε∗ contains only
one class. In this case, Γ ε∗ = {ŷ∗}, i.e., the region only con-
tains the predicted class. This is always true for our NCF
function. The proof is trivial and given in Appendix B.

The size of the prediction region is determined by the
chosen significance level ε and by the p-values derived via
CP. Specifically, from Equation 5 we can see that, for lev-
els ε1 ≥ ε2, the corresponding prediction regions are such
that Γ ε1 ⊆ Γ ε2 . It follows that, given a test input x∗, if ε is
lower than all its p-values, i.e. if ε < minj=1,...,c p

j
∗, then

the region Γ ε∗ contains all the classes, and Γ ε∗ shrinks as ε in-
creases. In particular, Γ ε∗ is empty when ε ≥ maxj=1,...,c p

j
∗.

We are now ready to introduce our frequentist uncer-
tainty measures, called confidence and credibility, which we
define in terms of two p-values, independently of the signif-
icance level ε. The intuition is that these two p-values iden-
tify the range of ε values for which the prediction is reliable,
i.e., |Γ ε∗ | = 1.

Definition 6 (Confidence and credibility) Given a predic-
tor F , the confidence of a point x∗ ∈ X , denoted by 1− γ∗,
is defined as:

1− γ∗ = sup{1− ε : |Γ ε∗ | = 1}, (7)

and the credibility of x∗, denoted by c∗, is defined as:

c∗ = inf{ε : |Γ ε∗ | = 0}. (8)

Therefore, the so-called confidence-credibility interval
[γ∗, c∗) contains all the values of ε such that |Γ ε∗ | = 1.

The confidence 1−γ∗ is the highest probability value for
which the corresponding prediction region contains only ŷ∗,
and thus it measures how likely (according to the calibration
set) our prediction for x∗ is. In particular, γ∗ corresponds to
the second largest p-value. The credibility c∗ is the smallest
level for which the prediction region is empty, i.e., no plau-
sible prediction is found by CP. It corresponds to the highest
p-value, i.e., the p-value of the predicted class. Figure 2 il-
lustrates CP p-values and corresponding prediction region
sizes. In binary classification problems, like our predictive
monitoring problem, each point x∗ has only two p-values:
c∗ (p-value of the predicted class) and γ∗ (p-value of the
other class).

It follows that the higher 1 − γ∗ and c∗ are, the more
reliable the prediction ŷ∗ is, because we have an expanded

8 L. Bortolussi et al.

0 1𝑝∗
%&'

> 1 𝟏 0|Γ∗,|

P-values
𝜖

𝑐

𝑝∗
%&/𝑝∗

%&0

𝛾∗ 𝑐∗

Fig. 2: CP p-values over the [0, 1] interval and corresponding sizes
of prediction interval. ỹi is the class with the i-th largest p-value, so
pỹ

1

∗ = c∗ and pỹ
2

∗ = γ∗.

range [γ∗, c∗) of ε values by which |Γ ε∗ | = 1. Indeed, in the
degenerate case where c∗ = 1 and γ∗ = 0, then |Γ ε∗ | = 1

for any value of ε < 1. This is why, as we will explain
in the next section, our uncertainty-based rejection criterion
relies on excluding points with low values of 1− γ∗ and c∗.
Hence, our frequentist uncertainty measure associates with
each input its confidence and credibility values.

Definition 7 (Frequentist uncertainty measure) Given a
predictor F with discriminant f , we define the frequentist
uncertainty measure uf : X → UF = [0, 1]2 as the function
mapping inputs x into their corresponding confidence and
credibility values, obtained as per Definition 6, i.e., ∀x ∈
X,uf (x) = (1− γ, c).

3.2 Bayesian Neural Networks

A neural network is a function fw : X → [0, 1]c, which
maps an input x ∈ X into a vector of class likelihoods,
fw(x) = [f1w(x), . . . , f cw(x)], depending on some param-
eters w, namely weights and biases. A trained neural net-
work is typically a complex but deterministic model. The
core idea of Bayesian neural networks (BNNs) is to place a
probability distribution over its parameters w, thereby trans-
forming the neural network into a stochastic model. The ad-
vantage of Bayesian methods, and BNNs in particular, is that
they provide a distribution of predictions, called predictive
distribution, rather than a single prediction like determinis-
tic NNs. Such distribution captures both the aleatoric uncer-
tainty, i.e., the noise inherent in the observations, and the
epistemic uncertainty, i.e. model uncertainty about its pre-
diction [28]. We will therefore leverage this predictive dis-
tribution (its mean and variance to be precise) to compute
our Bayesian uncertainty measures.

The Bayesian learning process starts by defining a prior
distribution for w that expresses our initial belief about the
parameter values. As we observe data Z ′ ∼ Z , we update
this prior to a posterior distribution using Bayes’ rule:

p(w|Z ′) = p(Z ′|w)p(w)

p(Z ′)
. (9)

Note that placing a prior distribution over w is analogous
to the random weight initialization required to train a tradi-
tional (deterministic) neural network. A common choice is
to choose a zero-mean Gaussian prior.

Similarly, we assume that the conditional distribution
p(y|x) is a softmax likelihood

p(y = yj |x,w) =
exp(f jw(x))∑c
i=1 exp(f

i
w(x))

. (10)

It follows that, given a set of i.i.d. observations Z ′, the like-
lihood function can be expressed as

p(Z ′ | w) =
∏

(xi,yi)∈Z′
p(yi|xi,w). (11)

Note that, because of the non-linearity introduced by the
neural network function fw(x) and by the softmax likeli-
hood, the posterior p(w|Z ′) is non-Gaussian. Finally, in or-
der to predict the value of the target for an unobserved input
x∗, we marginalize the predictions with respect to the pos-
terior distribution of the parameters, obtaining

p(ŷ∗|x∗, Z ′) =
∫
p(ŷ∗|x∗,w)p(w|Z ′)dw. (12)

The latter is called posterior predictive distribution and it
can be used to retrieve information about the uncertainty of
a specific prediction ŷ∗. Unfortunately, the integration is an-
alytically intractable due to the non linearity of the neural
network function [13,38].

Empirical approximation of the predictive distribution . As-
sume, for the moment, that we are able to sample from the
posterior distribution (9) and let [w1 , . . . ,wN] denote a vec-
tor of N realizations of the random variable w ∼ p(w|Z ′).
Each realizationwi induces a deterministic function fwi that
can be evaluated at x∗, the unobserved input. The likelihood
for a target ŷ∗ can be computed using (10). The empirical
approximation of the predictive distribution (12) can be ex-
pressed as

p(ŷ∗|x∗,Z ′) ≈
N∑
i=1

1

N
p(ŷ∗|x∗, wi)

=

N∑
i=1

1

N

[
exp(f∗wi(x∗))∑c
j=1 exp(f

j
wi(x∗))

]
, (13)

where f∗wi denotes the component of fwi corresponding to
class ŷ∗. By the strong law of large numbers, the empirical
approximation converges to the true distribution as N →
∞ [58]. The sample size N can be chosen, for instance, to
ensure a given width of the confidence interval for a statistic
of interest [49] or to bound the probability that the empirical
distribution differs from the true one by at most some given
constant [40].

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 9

Bayesian inference techniques. Since precise inference is
infeasible, various approximate methods have been proposed
to infer a BNN. We consider two approximate solution meth-
ods: Hamiltonian Monte Carlo and Variational Inference.

Let w be a weight vector sampled from the posterior dis-
tribution p(w|Z ′), i.e., a realization of the random variable
w. We denote with fw(x) the corresponding deterministic
neural network having weights fixed to w.

Hamiltonian Monte Carlo (HMC) [41] defines a Markov
chain whose invariant distribution is exactly the posterior
p(w|Z ′) . The Hamiltionian dynamics is used to speed up
the space exploration. HMC does not make any assump-
tion on the form of the posterior distribution, and is asymp-
totically correct. After convergence, HMC returns a trace
of explored network weights w0, w1, . . . , wN that, all to-
gether, can be interpreted as an empirical approximation of
the posterior p(w|Z ′). Controlling in a precise way the con-
vergence rate and how well the chain explores the parameter
space is, however, far from trivial.

Variational Inference (VI) [36] directly approximates the
posterior distribution with a known parametric distribution
q(w;ψ), typically a distribution easy to sample from. Its
parameters ψ, called variational parameters, are learned by
minimizing the Kullback-Leibler (KL) divergence between
the proposed distribution and the posterior. The KL diver-
gence between q(w;ψ) and p(w|Z ′) is defined as

KL(q(w;ψ)||p(w|Z ′)) =
∫
q(w;ψ) log

q(w;ψ)

p(w|Z ′)
dw.

(14)

Since the posterior distribution is not known, a different ob-
jective function, called Evidence Lower Bound (ELBO), is
introduced. It is defined as

ELBOψ = Eq(w;ψ){log p(Z ′|w)−KL(q(w;ψ)||p(w))}.
(15)

ELBO [24]. In VI, the variational objective, i.e., the negative
ELBO, becomes the loss function used to train of a Bayesian
neural network [24]. A common choice for q(w;ψ) is the
Gaussian distribution (where ψ are its mean and variance).

The predictive distribution is a non linear combination of
Gaussian distributions, and thus it is not Gaussian. However,
samples can be easily extracted from q(w;ψ), which allows
us to obtain an empirical approximation of the predictive
distribution.

Prediction uncertainty. Having showed how to derive em-
pirical approximations of the predictive distribution (either
with HMC or with VI) we can now extract statistics to char-
acterize the latter. We stress that the predictive distribution,
and hence its statistics, effectively captures prediction un-
certainty. Our Bayesian uncertainty measure is, therefore,

given by the empirical mean and variance of the predictive
distribution.

Definition 8 (Bayesian uncertainty measure) Given ob-
servations Z ′ ∼ Z and a Bayesian neural network fw with
w ∼ p(w|Z ′), we define the Bayesian uncertainty mea-
sure uf : X → UB ⊆ R2 as the function mapping in-
puts x into the the empirical mean and variance of the pre-
dictive distribution p(ŷ | x, Z ′) (12). Formally, ∀x ∈ X ,
uf (x) = (µ, σ2).

Remark 3 (Softmax probabilities as uncertainty measures) .
A popular method to assess the quality of a prediction is to
use the probabilities outputted by the softmax layer of the
DNN (i.e., the output of the discriminant function). How-
ever, previous works have shown that such probabilities are
not well calibrated, meaning that the probability associated
with the predicted class label does not reflect its ground-
truth correctness likelihood [37,32]. For example, in a bi-
nary classification problem, one can consider the difference
between the probability of the two classes as a measure of
uncertainty, where small differences indicate uncertain pre-
dictions. Previous experiments in [16] have shown that such
a measure yields poor error detection in NPM, because the
measure is overconfident in predictions that turn out being
erroneous.

Such observation supports our claim that more princi-
pled and calibrated methods to measure uncertainty are needed.
On one hand, our uncertainty measure based on Conformal
Prediction overcomes this limitation, as it makes predictions
with statistical evidence, rather than probabilistic evidence.
On the other hand, our Bayesian measure of uncertainty re-
mains consistent also in regions where no data has been ob-
served and, in particular, where the deterministic DNN will
behave almost randomly.

4 Uncertainty-based Rejection Criteria

In this section we show how to leverage the measures of un-
certainty introduced in Section 3 to learn an optimal, uncertainty-
based error detection rule for reachability predictions, thereby
solving Problem 2.

The rationale is that an unseen input x must have suffi-
ciently low uncertainty values in order for the prediction to
be accepted. However, manually determining such decision
boundaries on the uncertainty domainU is a non-trivial task.
As discussed in Section 2, optimal error detection thresholds
can be automatically identified by solving an additional su-
pervised learning problem.

For a type of error e ∈ {pe, fp, fn}, given a set of valida-
tion inputsXv , sampled fromX , and an uncertainty measure

10 L. Bortolussi et al.

uf , we build a validation set W e
v , defined as

W e
v = {(uf (x),1(e(x))) | x ∈ Xv}. (16)

The inputs ofW e
v , referred to asUv , are the uncertainty mea-

sures evaluated on Xv:

Uv = {uf (x) | x ∈ Xv}. (17)

Similarly, each input uf (x) ∈ Uv is then labelled respec-
tively with 1 or 0 depending respectively on whether or not
the classifier f makes a error of type e on x:

Eev = {1(e(x)) | x ∈ Xv}. (18)

For ease of notation, in the following we omit the type of
error considered. However, it is important to keep it in mind
when addressing a specific application.

We seek to find those uncertainty values that optimally
separate the points in Uv in relation to their classes, that is,
separate points yielding errors from those that do not. Find-
ing such a separation corresponds to finding a (sub-)optimal
solution to Problem 2.

As for the uncertainty measures of the previous section,
we present two alternative solutions to this problem. The
first one leverages Support Vector classification (SVC) and
applies to the frequentist case, based on CP, where the un-
certainty values are given by confidence and credibility. The
second solution leverages Gaussian Process classification
(GPC) and applies to the Bayesian case, based on BNNs,
where uncertainty values are given by mean and standard
deviation of the predictive distribution.

Remark 4 (Higly unbancanced dataset) . In predictive mon-
itoring, the neural network-based reachability predictors that
we use have typically very high accuracy (see results in Sec-
tion 6). Therefore, the dataset Wv is typically highly unbal-
anced, as it contains more examples of correct classifica-
tions (class 0) than of classification errors (class 1). In bi-
nary classification problems, in particular in both SVC and
GPC, accuracy can be a misleading measure when dealing
with imbalanced datasets. Indeed, for instance, a constant
function mapping any input into the most frequent class will
have high accuracy. Therefore, a model trained on accuracy
maximization tends to misinterpret the behaviour of the ob-
servations belonging to the minority class, causing misclas-
sification. However, in our method, the less frequent class
(i.e., the prediction errors) is actually the most interesting
one, which we want to classify correctly.

4.1 Frequentist error detection via Support Vector
Classification (SVC)

For data parsimony, since calibration points were not used
to train the reachability predictor, we build the validation set

Wv from the calibration set Zc. A cross-validation strategy
is used to compute values of confidence and credibility for
points in Zc. The cross-validation strategy consists of re-
moving the j-th score, αj , in order to compute γj and cj ,
i.e. the p-values at xj ∈ Xc, where Xc = {x | ∃y ∈ Y :

(x, y) ∈ Zc}. In this way, we can compute our frequentist
uncertainty measure given by confidence 1−γ and credibil-
ity c for every point in the calibration set. The Support Vec-
tor Classifier (SVC) is then trained on pairs ((1 − γ, c), e),
where e indicates whether or not a prediction error is ob-
served.

In a nutshell, SVC is a kernel-based method that maps
the original data into a new space, called feature space, via a
feature map φ. By doing so, patterns that are not linearly
separable in the original data can be converted to be lin-
early separable in the feature space [13]. The linear decision
boundary for a binary SVC is defined as

d(x) = a · φ(x) + b = 0, (19)

for x in the original space. Training a SVC reduces to find
the values of a and b that maximize the margin around the
separating hyperplane and the decision function d(x). In the
dual formulation of the SVC problem, whose details are out
of the scope of this paper, the optimization is performed us-
ing kernel functions rather than feature maps. Recall that a
kernel can be defined as k(u, u′) = φ(u)T · φ(u′). In prac-
tice, given a test point x∗ with predicted label ŷ∗ and un-
certainty measure uf (x∗) = (1 − γ∗, c∗), error detection at
x∗ boils down to evaluating the learned SVC, i.e., its deci-
sion function d, at uf (x∗). If d(uf (x∗)) > 0 the point x∗ is
classified as potentially erroneous, class 1, and 0 otherwise.

Tuning of SVC hyperparameters. A simple method to han-
dle imbalanced classes in SVC is via cost-sensitive learn-
ing [19]. The aim is to find the classifier that minimizes the
mean predictive error on the training set. Each misclassified
example by a hypothetical classifier contributes differently
to the error function. One way to incorporate such costs is
the use of a penalty matrix, which specifies the misclassi-
fication costs in a class dependent manner [11]. We design
an empirical penalty matrix P , as follows: the (i, j)-th entry
of P gives the penalty for classifying an instance of class i
as class j. Of course, when i = j, the penalty is null. The
penalty matrix for dataset Wv is defined as

P =

[
0 q

2re(q−ne)
req
2ne

0

]
, (20)

where ne is the number of points belonging to class 1 in
Wv , re is a parameter influencing how many errors we are
willing to accept and q = |Wv|. The term req

2ne
, which repre-

sents the penalty for wrongly classifying an error as correct,
increases as ne decreases. Note that, when re = 1 and the

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 11

dataset is perfectly balanced (q = 2ne), the penalties are
equal: req

2ne
= q

2re(q−ne) = 1. Further, if re > 1, the penalty
term increases, leading to more strict rejection thresholds
and higher overall rejection rates. On the contrary, if re < 1,
the penalty decreases, leading to possibly missing some er-
rors.

Definition 9 (Frequentist error detection criterion) Given
a state x∗ ∈ X , a reachability predictor f and an uncertainty
measure uf (x∗) = (1 − γ∗, c∗) as per Definition 7, the fre-
quentist error detection function Gf : UF → {0, 1} rejects
a reachability estimate F (x∗), i.e., Gf (1− γ∗, c∗) = 1, if
and only if

d (1− γ∗, c∗) > 0,

where d is the binary SVC of (19) trained on Wv (16).

4.2 Bayesian error detection via Gaussian Process
Classification (GPC)

Recall that we define our Bayesian uncertainty measure as
the mean and variance of the empirical approximation of
the BNN predictive distribution. Therefore, the prediction
ŷ∗ made on an unseen input x∗ is associated with a vector
of uncertainty (µ∗, σ

2
∗) ∈ UB ⊂ R2. To keep the approach

fully Bayesian, we propose a probabilistic solution to the
error detection problem based on Gaussian Processes [50].

Formally, a Gaussian Process (GP) is a stochastic pro-
cess, i.e., a collection of random variables indexed by some
input variable, in our case u ∈ U , such that every finite lin-
ear combination of them is normally distributed. In practice,
a GP defines a distribution over real-valued functions of the
form ` : UB → R and such distribution is uniquely identified
by its mean and covariance functions, respectively denoted
by m(u) = E[`(u)] and k(u, u′). The GP can thus be de-
noted as GP(m(u), k(u, u′)). This means that the function
value at any point u, `(u), is a Gaussian random variable
with meanm(u) and variance k(u, u). Typically, the covari-
ance function k(·, ·) depends on some hyper-parameter γ.

As mentioned before, GPs can be used to perform prob-
abilistic binary classification, i.e., learning a Bayesian clas-
sifier Gf : UB → {0, 1} from a set of observations. GPs
model the posterior probabilities by defining latent functions
` : UB → R, whose output values are then mapped into the
[0, 1] interval by means of a so-called link function Φ. Typi-
cally, in binary classification problem, the logit or the probit
function are used as Φ.

Given an input ui, let `i = `(ui) denote its latent vari-
able, i.e., the latent function ` evaluated at ui. Also denote
lv = [`(ui) | ui ∈ Uv], where Uv is a set of input points de-
fined as per 17. From Uv it is possible to compute the mean
vectormv of the GP, by evaluating the mean functionm(·) at
every point in the set, and the covariance matrixKγ

v , by eval-
uating the covariance function on every pair of points in the

set: mv = [m(ui)|ui ∈ Uv] and Kγ
v = [kγ(ui, uj)|ui, uj ∈

Uv].
The first step of a GPC algorithm is to place a GP prior

over the latent function `, defined by

p(`|Uv) = N (`|mv,K
γ
v).

Let now consider a test input u∗ with latent variable `∗.
In order to do inference, that is, predict its label e∗, we have
to compute

p(e∗ = 1|u∗, Uv, Ev) =
∫
Φ(`∗)p(`∗|u∗, Uv, Ev)d`∗,

(21)

where Ev , see Equation 18, denotes the set of labels corre-
sponding to points in Uv , see Equation 17. The discriminant
function gf : UB → [0, 1]2 of the error detection classifier
Gf is defined as

gf (u∗) = [1−p(e∗ = 1|u∗, Uv, Ev), p(e∗ = 1|u∗, Uv, Ev)].
(22)

To compute equation (21), we have to marginalize the pos-
terior over the latent Gaussian variables:

p(`∗|u∗, Uv, Ev) =
∫
p(`∗|u∗, Uv, `v)p(`v|Uv, Ev)d`v,

(23)

where the posterior p(`v|Uv, Ev) can be obtained using the
standard Bayes rule

p(`v|Uv, Ev) =
p(Ev|`v, Uv)p(`v|Uv)

p(Ev|Uv)
.

Therefore, performing inference reduces to solving two
integrals, Eq. 21 and 23. In classification, the first integral
is not available in closed form since it is the convolution
of a Gaussian distribution, p(`v), and a non-Gaussian one,
p(Ev|`, Uv). Hence, we have to rely on approximations in
order to compute and integrate over the posterior p(`v|Ev).
In our experiments, we use the Laplace method, which pro-
vides a Gaussian approximation q(`v|Ev) of the posterior
p(`v|Ev), which can then be easily computed and integrated
over.

Tuning of GPC hyperparameters. In the prior distribution
the covariance for the latent variables depend on some hy-
perparameters γ. A classical strategy to select the optimal
values for such parameters is to find the values of γ that
maximize the marginal likelihood, which, intuitively, mea-
sures how likely the data are, given a certain value of γ.
However, as mentioned in Remark 4, the marginal likeli-
hood may be a poor choice because class 1 is very little
represented. An alternative solution is to compute, for dif-
ferent values of γ, the confusion matrix of the GPC on the

12 L. Bortolussi et al.

training set Wv . The entries of such matrix can be used to
define more clever measures of performance that apply to bi-
nary classification. In our experiments, we use the true pos-
itive rate (TPR), as it is well-suited for datasets presenting a
strong disproportion. TPR measures the fraction of points in
class 1 that have been correctly classified:

TPRγ := TP
TP+FN , (24)

where TP indicates the number of true positives and FN in-
dicates the number of false negatives. Alternative measures,
such as the Matthews correlation coefficient (MCC) [18],
may apply. Note that, during the training phase, the GPC
assigns to each point the class with highest likelihood.

Another key step is the following. The discriminant func-
tion, gf , returns a vector containing the probability of be-
longing to each of the two classes. However, such prob-
abilities might not separate well in cases of highly unbal-
anced datasets. Therefore, choosing the class with the high-
est probability, as per Definition 4, may lead to bad perfor-
mance. Therefore, after the GPC has been trained with an
optimal value for γ, it may be useful to find the decision
threshold that maximize the GPC accuracy on the training
setWv . This can be done, for instance, using the ROC curve.
In other words, we classify as correct (class 0) only those
points that have an extremely high probability of belong-
ing to that class. We do so by searching for the threshold
τ that maximizes the quantity TPR − FPR, i.e., the pro-
portion of recognized errors minus the proportion of points
wrongly rejected. Below we provide the formal definition of
the Bayesian error detection function for a generic threshold
τ .

Definition 10 (Bayesian error detection criterion) Given
a state x∗ ∈ X , a reachability predictor f , a Bayesian un-
certainty measure uf (x∗) = (µ∗, σ

2
∗) = u∗ as per Defi-

nition 8, and a decision threshold τ ∈ [0, 1), the error de-
tection function Gf : UB → {0, 1} rejects a reachability
estimates F (x∗) if and only if

p(e∗ = 1 | u∗, Uv, Ev) > τ,

where Uv , Ev are the inputs and outputs of the validation
set, see (17) and (18).

5 Active Learning

Recall that we are dealing with two related learning prob-
lems: learning a prediction rule (i.e., a reachability predic-
tor) using the training set Zt, and learning a rejection rule
using the validation set Wv (via learning an adequate uncer-
tainty measure first).

As the accuracy of a classifier increases with the qual-
ity and the quantity of observed data, adding samples to

Zt will generate a more accurate predictor, and similarly,
adding samples to Wv will lead to more precise error de-
tection. Ideally, one wants to maximize accuracy while us-
ing the least possible amount of additional samples, because
obtaining labeled data is expensive (in NPM, labelling each
sample entails solving a reachability checking problem), and
the size of the datasets affects the complexity and the dimen-
sion of the problem. Therefore, to improve the accuracy of
our learning models efficiently, we need a strategy to iden-
tify the most “informative” additional samples.

For this purpose, we propose an uncertainty-aware ac-
tive learning solution, where the re-training points are de-
rived by first sampling a large pool of unlabeled data, and
then considering only those points where the current predic-
tor f is still uncertain. The criterion used to decide whether
a point is uncertain enough to be considered informative is
indeed our rejection rule Rf . In particular, recall that the
uncertainty function uf : X → U maps input states to
their level of uncertainty, and the error detection function
Gf : U → {0, 1} maps uncertainty values to a binary class
interpreted as accepting/rejecting a prediction. The rejec-
tion rule Rf : X → {0, 1}, introduced in Section 2, is
defined as the combination of these two functions, Rf =

Gf ◦uf . Therefore, such rejection rule provides an effective
uncertainty-based query strategy. Points rejected byRf , i.e.,
points whose predictions are expected to be erroneous, are
indeed the most uncertain ones.

The proposed active learning method should reduce the
overall number of erroneous predictions, because it improves
the predictor on the inputs where it is most uncertain, and, as
a consequence, also reduces the overall rejection rate. How-
ever, it cannot be excluded in general that the retraining pro-
cess introduces new prediction errors. We stress that, with
our method, these potential new errors can be effectively de-
tected.

5.1 General active learning algorithm

Our active learning algorithm works as follows. The rejec-
tion rule Rf is used as a query strategy to identify, from a
batch of randomly selected unlabeled points, those with a
high degree of uncertainty. We then query the oracle, i.e.,
the HA reachability checker, to label such uncertain points,
and finally we divide them into two groups: one group is
added to the training set Zt ⊆ X × Y , producing the aug-
mented dataset Zat ; the other is added to the validation set
Zv , producing Zav . The set of uncertain points must be di-
vided according to the splitting probability used to originally
divide Z ′ into Zt and Zv . The first step consists in retraining
the reachability predictor on Zat . Let fa denote the new pre-
dictor. The second step requires extracting the augmented
validation datasetW a

v from Zav . To do so, we must first train

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 13

a new uncertainty measure ufa so as to reflect the new pre-
dictor fa. Then, the new error detection rule Gfa is trained
on

W a
v = {(ufa(x),1(efa(x)) | x ∈ Xa

v },
where efa is the error predicate introduced in Section 2 (the
fa index is added to stress dependency on the updated pre-
dictor). In conclusion, this process leads to an updated re-
jection rule Rfa = Gfa ◦ ufa , which is expected to have a
reduced rate of incorrect rejections.

We now describe in detail our uncertainty-aware active
learning algorithm, which given an initial training set Zt, a
predictor with discriminant f trained onZt, an initial valida-
tion set Zv , and a rejection rule Rf trained on Zv , computes
an enhanced predictor fa and enhanced rejection rule Rfa
as follows.

Algorithm 1 Active Learning algorithm
Inputs: training setZt, validation setZv , predictor f , uncertainty func-
tion uf , rejection rule Rf , maximum iterations nit .
Outputs: enhanced predictor fa, enhanced rejection rule Raf .

repeat nit times:

// Select re-training inputs
1. Randomly sample a set of input points.
2. Identify the subset A of points rejected based on Rf .

// Derive augmented datasets
3. Invoke the reachability oracle to label the points in A.
4. Divide the data into two groups and add them respectively to Zt

and Zv , obtaining an augmented training set, Zat , and an aug-
mented validation set, Zav .

5. Train a new predictor fa from Zat .
6. Build the training set W fa

v using Zav and fa.
7. Train a new error detection rule Gfa , using uf and the method of

Section 4, and obtain the enhanced rejection rule Rfa .
8. Zt ← Zat , Zv ← Zav , f ← fa, Rf ← Raf .

end

The above algorithm is used as-is in the Bayesian frame-
work. For the frequentist case, we present a refined version
of the algorithm that overcomes issues with the sensitivity
of CP-based measures.

Sensitivity of CP-based uncertainty measures. The distribu-
tion of calibration scores depends both on the case study at
hand and on the trained classifier. If such a classifier F has
high accuracy, then most of the calibration scoresα1, . . . , αq
will be close to zero. Each p-value pj∗ of an unseen test
point x∗ counts the number of calibration scores greater than
αj∗, the non-conformity score for label j at x∗. Credibility,
which is the p-value associated with the class predicted by
F , is expected to have a small score and therefore a high p-
value. On the contrary, γ, which is the p-value associated to
the other (non-predicted) class, is expected to have a larger
score. However, given the high accuracy of F , the number

of calibration scores significantly greater than zero is very
small. Therefore, the fraction of calibration scores determin-
ing γ is not very sensitive to changes in the value of α∗,
which is determined by f(x∗). On the contrary, credibility
is extremely sensitive to small changes in α∗. In general, the
sensitivity of confidence with respect to α∗ increases as the
accuracy of f decreases, and vice versa for credibility. Fig-
ure 3 shows the credibility landscapes for two different train-
ing instances of model f on the same training set for a con-
crete case study. We observe that even if regions where mis-
classifications take place are always assigned low credibility
values, outside those regions credibility values are subject to
high variance.

This sensitivity results in a over-conservative rejection
criterion, leading to a high rejection rate and in turn, to an
inefficient query strategy. However, if we enrich the calibra-
tion set using additional samples with non-zero α-scores,
we can reduce such sensitivity, thereby making credibility
more robust with respect to retraining. This process is illus-
trated in Figure 3, where the additional non-zero α-scores
(right) lead to a more robust credibility landscape, where
low-credibility regions are now more tightly centred around
areas of misclassification.

Observing that samples with uncertain predictions will
have non-zero α-scores5, we will use the original rejection
rule to enrich the calibration set, thereby deriving a refined
rejection rule and in turn, a refined and more effective query
strategy for active learning.

5.2 Frequentist active learning algorithm

Provided that the credibility measure is extremely sensitive
in our application, we found that dividing the frequentist ac-
tive learning algorithm in two phases dramatically improves
performances. In the first phase, we refine the query strat-
egy: we use the current rejection rule Rf to identify a batch
of uncertain points, temporarily add these points to the cal-
ibration set, thereby obtaining an updated, more robust, re-
jection rule that we use as a query strategy. In the second
phase, we simply perform an active learning iteration i.e.,
steps 2–5 above) but using the refined query strategy to iden-
tify the re-training inputs.

We now describe the details of this variant of the active
learning algorithm designed for the frequentist framework.
Given an initial training set Zt, a prediction rule f trained on
Zt, an initial calibration set Zc, a rejection rule Rf trained
on Zc and a rejection ratio re, we proceed as follows.

It is important to observe that, in order for the active
learning algorithm to preserve the statistical soundness of
conformal prediction, the augmented training and calibra-
tion setsZat andZac must be sampled from the same distribu-

5 The α-score of a sample (xi, yi) is zero only if fyi(xi) = 1.

14 L. Bortolussi et al.

Algorithm 2 Frequentist AL algorithm
Inputs: training set Zt, calibration set Zc, predictor f , uncertainty
function uf , rejection rule Rf , maximum iterations nit .
Outputs: enhanced predictor fa, enhanced rejection rule Raf .

repeat nit times:

// Refine the query strategy
1. Randomly sample a set of input points.
2. Identify the subset Q of points rejected by Rf .
3. Identify the subset A of points rejected based on Rf .
4. Invoke the reachability oracle to label the points in Q.
5. Define a query set ZQ by adding these points to Zc.
6. Obtain an updated rejection rule RQf from ZQ using the method

of Section 4.

// Active phase
7. Randomly sample a set of input points.
8. Identify the subset A of points rejected by RQf .
9. Invoke the reachability oracle to label the points in A.

10. Divide the labeled data into two groups and add them respectively
to Zt and Zc, obtaining an augmented training set, Zat , and an
augmented calibration set, Zac .

11. Train a new predictor fa from Zat .

12. Zt ← Zat , Zc ← Zac , f ← fa, Rf ← Raf .

end

Fig. 3: Credibility values in the spiking neuron case study. Calibration
scores (first row) and credibility landscapes using the initial calibration
set Zc (left column) versus the query set ZQ (right column). The land-
scapes are obtained for different instances of the predictor f , trained
on the same dataset Zt.

tion. This is guaranteed by the fact that, in the active learning
phase, we add new points to both the training and the cali-
bration dataset, and these points are sampled from the same
distribution (in particular, we apply the same random sam-
pling method and same rejection criterion). The only caveat
is ensuring that the ratio between the number of samples in
Zc and Zt is preserved on the augmented datasets.

IP AP CC TWT HC SN
DNN-S 99.84 99.56 99.92 99.91 98.33 99.78

SNN 99.74 99.49 99.91 99.81 98.96 99.51
DNN-R 99.61 99.41 99.91 99.82 98.75 97.59

SVM 98.85 99.17 99.50 99.32 96.54 67.94
RF 99.66 96.61 99.19 99.24 91.67 99.51

NBOR 99.66 96.61 99.19 99.24 91.67 98.43
BNN-VI 99.47 99.29 99.49 99.56 99.32 99.45

BNN-HMC 99.12 99.63 99.88 99.77 97.79 98.87
GP 99.80 99.61 99.86 99.76 96.16 98.43

BLR 57.85 97.68 97.96 87.16 90.14 56.72

Table 1: Empirical accuracy of the state classifiers for each case study.
Values are in percentage. For each model, the best result for determin-
istic classifiers, and the best result for Bayesian classifiers, are high-
lighted in bold.

6 Experimental Results

We experimentally evaluate the proposed method and com-
pare the frequentist and Bayesian approaches on a bench-
mark of six hybrid system models with varying degrees of
complexity. We consider four deterministic case studies: the
model of the spiking neuron (SN) action potential [46] in-
troduced in Section 2 and the classic inverted pendulum (IP)
on a cart, which are two-dimensional models with non-linear
dynamics, the artificial pancreas (AP) [42], which is a six-
dimensional non-linear model, and the helicopter model (HC)
[46], which is a linear model with 29 state variables. In ad-
dition, we analyze two non-deterministic models with non-
linear dynamics: a cruise controller (CC) [46], whose input
space has four dimensions, and a triple water tank (TWT)6,
which is a three-dimensional model. Details of the case stud-
ies are available in the Appendix C.

6.1 Experimental settings

The experiments were performed on a computer with a CPU
Intel x86, 24 cores and a 128GB RAM.

Table 1 compares the performances of DNN and BNN
against different types, respectively deterministic and Bayesian,
of classifiers. In particular, in the deterministic case we com-
pare: a sigmoid-DNN (DNN-S) with 3 hidden layers of 10
neurons each, tanh activations for the hidden layers and Sig-
moid function for the output layer; a shallow NN (SNN)
of 20 neurons; a ReLu DNN (DNN-R), with 3 hidden lay-
ers of 10 neurons each and rectified linear unit (ReLU) ac-
tivations for all layers; a support vector machine with ra-
dial kernel (SVM); a random forest classifier (RF); and a k-
nearest neighbors classifier (NBOR). For the Bayesian case
we compare: a Bayesian NN (BNN) with 3 hidden layers of
10 neurons each, standard Gaussian priors, trained with both
variational inference (BNN-VI) and Hamiltonian Monte Carlo

6 http://dreal.github.io/benchmarks/networks/
water/

http://dreal.github.io/benchmarks/networks/water/
http://dreal.github.io/benchmarks/networks/water/

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 15

(BNN-HMC) methods; a Gaussian Process (GP); and a Bayesian
Logistic Regression model (BLR). In the deterministic frame-
work, differences in accuracy values are relatively small,
even though the DNNs outperform the other classifiers in
all case studies but HC. In the Bayesian scenario we ob-
serve that GP and BNN have comparable performances on
the simplest models. However, BNN works better as soon as
the dimension of the system increases. Furthermore, BNNs
offer better scalability than GPs. Indeed, the scalability of
GP inference depends heavily on the size of the dataset n,
with a time complexity of O(n3), whereas for BNNs with
VI this is O(n ·m), where m is the number of epochs, and
for BNN with HMC the complexity is O(n · k), where k is
the number of steps of the Markov chain. In our experiments
m� k, and k and n have same order of magnitude. On the
other hand, BLR shows limited performances for systems
whose dynamics is intrinsically nonlinear. In general, de-
spite the overall difference in performance may seem small,
we would like to stress that we target safety-critical applica-
tions, for which we seek accuracies as close as possible to
100% and even small improvements become important.

Motivated by the results presented in Table 1, we choose
the sigmoid DNN architecture described above for our reach-
ability predictions. In particular, the output of the DNN with
parameters w in a state x ∈ X , denoted by fw(x), is the
likelihood of class 1, i.e., the likelihood that the hybrid au-
tomaton state is positive. Therefore, the discriminant func-
tion f evaluated at x returns a vector of probabilities f(x) =
[1−fw(x), fw(x)]. To avoid overfitting, we did not tune the
architecture (i.e., number of neurons and hidden layers) to
optimize the performance for our data and, for the sake of
simplicity, we choose the same architecture for all the case
studies, as we found no specific DNN architecture with con-
sistently better performances. See Appendix D for a detailed
performance analysis for different choices of the DNN ar-
chitecture. In particular, we use the same architecture for
deterministic DNNs and their Bayesian counterpart.

The entire pipeline is implemented in Python, and the
neural networks are trained with TensorFlow [1] and Py-
Torch [44]. More precisely, Keras [22], a Python deep learn-
ing library, is used to train the deterministic DNN, Edward [57],
a Python library for probabilistic modeling built on Tensor-
Flow, is used to train the BNN with HMC inference, and
Pyro [12], a probabilistic programming library built on Py-
Torch, is used to train the BNN with VI. The source code
for all the experiments can be found at the following link:
https://github.com/francescacairoli/NPM.

For every model, we generate an initial dataset Z ′ of
20K samples and a test set Ztest of 10K samples. The heli-
copter model is the only exception, where, due to the higher
dimensionality, a set Z ′ of 100K samples is used. Both Z ′

and Ztest are drawn from the same distribution Z; see [46]
and Appendix E for more details on how data are labeled

and on the distributions for each case study. The training and
validation sets are two subsets of Z ′ extracted as follows: a
sample z ∈ Z ′ has probability s of falling into Zt and prob-
ability 1−s of falling into Zv , where s = 0.7 is the splitting
ratio. Recall that the calibration set Zc of the frequentist ap-
proach coincides with the validation set Zv and that we use
the same splitting rate s when augmenting the datasets dur-
ing active learning. The dReal solver [31] is used as a reach-
ability oracle to label the datasets for the non-deterministic
case studies. For the deterministic case studies, we used an
HA simulator implemented in MATLAB.

Kernel choice. Both error detection rules, based on SVC
for the frequentist approach and GPC for the Bayesian ap-
proach, are kernel-based methods. The radial basis function
(RBF) kernel has been chosen in both cases, as it outper-
forms the polynomial and linear kernels. The RBF is defined
as kγ(u, u′) = exp(γ‖u − u′‖2), where ‖u − u′‖2 is the
squared Euclidean distance between the two input vectors.

Error type selection. Below we focus on detecting all kinds
of prediction error, including false positives and false neg-
atives. However, it is possible – and this is a very useful
feature of our approach – to focus on a specific type of error.
For example, in safety-critical applications, one could focus
on detecting false negatives, which are the most critical kind
of errors. An alternative solution, which we explored in [15],
is to learn two distinct rejection rules, one for false positives
and one for false negatives, and combine them into a global
rejection rule that suits the case study at best.

In addition, in the frequentist case, one can tune the SVC
penalty matrix P (see equation (20)) to penalize specific
kinds of errors. For instance, setting rfn > 1 will result
in a detection rule that is stricter on recognizing false nega-
tives. In the Bayesian case, the GPC decision threshold can
be tuned by maximizing scores other than TPR − FPR.

Tuning of the Bayesian approach. Training the determinis-
tic DNNs was straightforward in our experiments. All mod-
els share the same initialization settings and all reach an
extremely high accuracy (always higher than 99%, see Ta-
ble 3). On the contrary, training a Bayesian Neural Network
requires a careful tuning of the inference hyperparameters,
e.g. the choice of prior distributions and the sample size
used to empirically approximate the predictive distribution.
Furthermore, in the HMC framework, the parameters gov-
erning the Hamiltonian dynamics affect the capabilities of
the Monte Carlo algorithm to explore and to eventually con-
verge. In the VI framework, the hyper-parameters by which
we maximize the ELBO (15) may change from one model
to the other. The main drawback is that this may limit the
effectiveness of the active learning framework, as explained
later in this section.

https://github.com/francescacairoli/NPM

16 L. Bortolussi et al.

6.2 Performance measures

We want our method to be capable of working at runtime,
which means it must be extremely fast in making predic-
tions and deciding whether to trust them. We emphasize that
the time required to train the reachability predictor and the
error detection rule does not affect its runtime efficiency, as
it is performed in advance (offline) only once. Also, we do
not want an over-conservative rejection rule, as unnecessary
rejections would reduce effectiveness of our predictive mon-
itor7.

Keeping that in mind, the relevant performance metrics
for NPM are the accuracy of the reachability predictor F ,
the error detection rate (or recognition rate) and the overall
rejection rate of the rejection rule Rf . The error detection
rate measures the proportion of errors made on the test set
by F that are actually recognized by Rf , whereas, the re-
jection rate measures the overall proportion of test points
rejected by Rf . Clearly, we want our method to be reliable
and thus, detect the majority of prediction errors (high de-
tection rate) without being overly conservative, i.e., keeping
a low rejection rate.

Another important remark is about the interaction of the
two classifiers, F and Gf : as the accuracy of F increases
it commits fewer errors, which makes it harder for the de-
tection rule Gf to learn how to capture them because the
validation set Wv for training Gf will contain few examples
of prediction errors. The opposite holds as well: if F per-
forms poorly, it produces a less unbalanced validation set
Wv , which may result in a more accurate rejection rule Rf .
These two behaviours are balanced against one another, as
discussed above, by tuning the training of the rejection rules.

6.3 Computational performance

Offline cost. Training an NPM requires the following steps:
(i) training the state classifier, (ii) generating the datasets
Wv , which requires computing the uncertainty values for
each point in Zv , and (iii) training the error rejection rule.
All these steps are performed offline. Executing the entire
pipeline, i.e., learning a working NPM, when |Z ′| = 20K,
takes around 3 minutes in the frequentist case and around 11

minutes in the Bayesian case. When |Z ′| = 100K, it takes
around 6.5 (120−190) minutes in the frequentist (Bayesian)
case. The time required to execute 20K VI epochs is compa-
rable with the time required to perform 2K HMC steps (see
Table 2, bottom-left frame)).

7 Defining countermeasures to a rejected prediction is out of the
scope of our method, but these may include switching to a fail-safe
mode of the system or querying the HA model checker for the true
reachability value. Both cases consistently affect the runtime efficiency
of our monitor.

Online cost. Given a test input x∗, it takes from 1.4 up to
31 milliseconds to evaluate the NPM, i.e., to make a predic-
tion and choose whether to accept it or not (see Table 2,top
frame). Importantly, this time does not depend on the di-
mension or dynamics of the hybrid system. However, in the
Bayesian approach it depends on the number of observations
used to empirically approximate the predictive distribution,
which is a fixed cost, whereas, in the frequentist approach
the evaluation time is affected by the size of the calibra-
tion set Zc, which may increase as we add observations8.
On this aspect, the query strategy refinement we propose for
active learning ensures that the augmented calibration set is
as small as possible, which translates into runtime efficiency
of our method.

Active learning overhead (offline). Active learning carries
two additional training costs: the time needed to compute
uncertainty values for a large pool of data, and the time the
oracle needs to compute labels for the most uncertain points.
The latter dominates, especially for non-deterministic sys-
tems, since they require fully-fledged reachability checking,
which is more expensive than simulation of a determinis-
tic system. Therefore, if the rejection rate is relatively high
and we consider a large pool of randomly selected points,
the procedure may take long. The pool of new inputs has in-
deed to be large in order to have good exploration and find
significant instances. As we will show experimentally, our
uncertainty-aware active learning approach results in a more
precise rejection rule with a lower rejection rate. Therefore,
the time spent for offline retraining pays off in improving
the online performance of the NPM.

In our study, the pool used to refine the query strategy
(required only with CP) contains 50K samples, whereas the
pool used for the active learning phase contains 100K sam-
ples. In particular, one iteration of the active learning proce-
dure takes, for the simplest deterministic models, around 10
minutes in the frequentist scenario, and around 20 minutes
in the Bayesian scenario (both VI and HMC approaches).
The helicopter model needs longer time, as it is trained for
a higher number of epochs: it takes around 1 hour in the fre-
quentist case against the 10 hours of the Bayesian case. For
the non-deterministic models (triple water tank and cruise
controller), an active learning iteration takes approximatively
the same time of a simple deterministic model, except for
the overhead introduced in labeling new points (see Table 2:
bottom-right frame). dReal, the non-deterministic reachabil-
ity checker, takes around 1.5 minutes to label 100 observa-
tions of the CC model and around 4 minutes to label the

8 The size of Zc affects only the computation of the uncertainty
measures, which reduces to computing two p-values (confidence and
credibility). Each p-value is derived by computing a nonconformity
score, which has same cost as evaluating the state classifier, and one
search over the array of calibration scores.

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 17

Online costs (ms)
Model CP VI HMC

IP 1.4 13.0 8.1
AP 2.1 15.0 7.9
CC 2.0 14.0 8.2

TWT 2.1 14.0 8.1
HC 4.0 31.0 14.5
SN 1.6 15.0 8.3

Offline costs (min) AL overhead (min)
Model CP VI HMC CP VI HMC

IP 2.0 8.9 14.5 9.6 32.4 27.8
AP 2.5 11.6 9.3 10.0 30.4 16.4
CC 2.9 12.2 14.1 57.9 95.0 135.5

TWT 3.1 12.8 11.0 21.2 74.4 207.6
HC 6.5 194.0 121.0 26.0 593.0 917.1
SN 4.5 9.9 15.2 11.4 29.9 57.5

Table 2: (Top)Online computational costs: time to evaluate the NPM,
i.e., time to obtain a reachability prediction and decide whether to trust
it, on a single state. Time is measured in milliseconds (ms). (Bottom)
Offline computational costs: time required to initially train the NPM.
AL overhead: time to complete an active learning iteration (on aver-
age). Time is measured in minutes.

Model NSC Acc.] Err. Det. rate Rej. rate
IP CP 99.55 45 100.00 5.37

VI 99.72 28 83.81 1.46
HMC 99.03 97 96.70 9.68

AP CP 99.64 36 100.00 4.97
VI 99.30 70 97.17 5.36

HMC 98.35 165 96.73 9.34
CC CP 99.88 12 100.00 3.63

VI 99.25 75 91.15 3.67
HMC 98.16 184 98.04 7.75

TWT CP 99.81 19 100.00 4.40
VI 99.58 42 74.92 1.06

HMC 98.13 187 93.30 6.56
HC CP 99.43 57 97.21 6.12

VI 97.37 263 84.24 13.55
HMC 97.66 234 91.60 16.03

SN CP 99.79 21 100.00 3.95
VI 98.47 153 85.76 6.04

HMC 98.69 131 99.24 21.84

Table 3: NSC accuracy, error detection rate and rejection rate in initial
configuration. Each block denotes a different case study. CP indicates
the frequentist approach, VI and HMC indicate the two inference tech-
niques used in the Bayesian approach.

same amount of points of the TWT model. In general, the
time required for a single active learning iteration is ex-
pected to decrease for subsequent iterations, as the rejec-
tion rate will be lower (leading to fewer retraining samples).
Note that retraining is performed offline and does not affect
runtime performance of our approach.

6.4 Experiments

We evaluate our approach on three configurations: the ini-
tial configuration, where the predictor F and error detec-
tion rule Gf are derived via supervised learning; the active

NSC Acc.] Err. Det. rate Rej. rate
Inverted Pendulum (IP)

CP Initial 99.79 21 100.00 5.24
Active 99.87 13 100.00 3.12
Passive 99.79 21 100.00 6.07

VI Initial 99.58 42 80.95 1.68
Active 99.58 42 85.71 1.31
Passive 99.71 29 75.81 1.13

HMC Initial 87.45 1255 100.00 24.72
Active 99.15 85 87.06 4.17
Passive 98.49 151 100.00 13.02

Artificial Pancreas (AP)
CP Initial 99.61 39 100.00 4.17

Active 99.83 17 100.00 1.65
Passive 99.62 38 100.00 5.48

VI Initial 99.29 71 95.77 5.17
Active 99.71 29 96.55 1.75
Passive 99.47 53 100.00 3.29

HMC Initial 98.95 105 98.09 8.32
Active 99.38 62 90.32 4.17
Passive 95.12 488 100.00 26.79

Cruise Controller (CC)
CP Initial 99.85 15 100.00 3.46

Active 99.96 4 100.00 0.51
Passive 99.88 12 100.00 5.15

VI Initial 99.01 99 97.98 5.53
Active 99.84 16 100.00 1.25
Passive 99.74 26 100.00 1.46

HMC Initial 97.22 278 99.64 8.41
Active 99.47 53 94.34 3.14
Passive 95.75 425 97.03 8.42

Triple Water Tank (TWT)
CP Initial 99.82 18 100.00 5.87

Active 99.96 4 100.00 0.70
Passive 99.81 19 100.00 4.43

VI Initial 99.60 40 77.50 1.11
Active 99.67 33 84.85 1.61
Passive 99.50 50 75.40 20.32

HMC Initial 97.50 250 96.80 5.04
Active 99.20 80 95.00 3.70
Passive 91.86 814 52.58 11.31

Helicopter (HC)
CP Initial 99.21 79 95.95 6.75

Active 99.49 51 94.12 4.52
Passive 99.40 60 95.00 5.92

VI Initial 98.14 186 88.71 13.64
Active 98.90 110 92.86 1.98
Passive 98.66 134 87.54 9.94

HMC Initial 97.74 226 89.82 14.71
Active 97.74 223 73.01 7.06
Passive 97.77 223 65.47 6.40

Spiking Neuron (SN)
CP Initial 99.61 39 100.00 4.17

Active 99.83 17 100.00 1.65
Passive 99.62 28 100.00 5.48

VI Initial 98.18 182 91.21 7.91
Active 98.20 180 91.11 6.26
Passive 98.20 180 98.52 14.57

HMC Initial 98.32 168 74.40 9.89
Active 98.89 111 87.38 5.91
Passive 98.21 179 74.86 14.85

Table 4: Comparison of initial, active and passive approaches. Results
are over a single run. Legend is as in Table 3.

18 L. Bortolussi et al.

configuration, where the initial models are retrained via our
uncertainty-aware active learning; and the passive configu-
ration, where the initial models are retrained using a uni-
form sampling strategy to augment the dataset and with the
same number of observations of the active configuration.
In this way, we can evaluate the benefits of employing an
uncertainty-based criterion to retrain our models.

Table 3 presents the experimental performances (on the
test set Ztest) in the initial configuration. The results are av-
eraged over five runs, where in each run, we resample Zt
and Zc from Z ′ and retrain F . Table 4 compares the perfor-
mances of the three configurations, only for one run in this
case.

Frequentist approach. The average NSC accuracy over the
six case studies is 99.68%. The rejection criterion recog-
nizes well almost all the errors, with an average error de-
tection rate of 99.53%, but the overall rejection rate in the
initial configuration is around 5%, a non-negligible amount.
Table 4 shows that the passive learning approach provides
little improvement: the NSC accuracy is similar to the initial
one and the rejection rate is still relatively large. However,
the active approach provides a significant improvement: the
overall rejection rate and the number of errors made by the
NSC falls dramatically, while preserving the ability of de-
tecting almost all errors (with an error detection rate of 100%,
except for the helicopter). In particular, rejection rates span
from 3.46% to 6.75% with the initial rejection rule, but drop
to between 0.51% and 4.52% after active learning, and the
average NSC accuracy increases from 99.68% (initial) to
99.82% (active).

Bayesian approach. The predictive distribution is approx-
imated by samples of 100 observations. The BNN priors
are chosen to be standard normal distributions. In the initial
configuration, the NSC accuracy, averaged over all the case
studies, is 98.95% with VI and 98.27 with HMC. The rejec-
tion criterion recognizes on average 86.18% of errors with
VI and 95.27% with HMC. The overall rejection rate is ap-
prox. 5.19% with VI, spanning from 1.06% to 13.55%, and
approx. 9.87% with HMC, spanning from 6.56% to 16.03%.

Table 4 shows that, in the HMC framework, the pas-
sive learning approach happens to produce results that are
even worse than the initial configuration. The reason might
be that that once the training sets are extended with data
that may come from a distribution different from X , the
set of hyper-parameters chosen to optimally solve the ini-
tial problem may become sub-optimal. Indeed, when the
hyper-parameters were tuned again, specifically for the pas-
sive learning dataset, high performances were reached. For
instance, in the TWT model, the initial HMC performance
rates (obtained with proper hyper-parameter tuning) are: 97.5%
accuracy, 96.8% recognition and 5.04% rejection. Passive

learning (without re-tuning the hyper-parameters) causes a
significant drop in performance: 91.86% accuracy, 52.58%
recognition and 11.31% rejection. However, once the HMC
hyper-parameters are tuned specifically for the passive learn-
ing dataset, the level of performance gets back to the initial
one: 98.59% accuracy, 96.45% recognition and 3.63% rejec-
tion. On the other hand, active learning still yields improve-
ments: the NSC accuracy rises from 98.27% to 99.30%, and
the rejection rates, initially very high, are significantly re-
duced, which unfortunately causes a slight decrease in the
error detection accuracy. The recognition rate falls from 95.27%

to 91.68%.
We finally observe that VI outperforms inference via

HMC, even though VI is not able to reach recognition rates
as high as in the frequentist approach. In particular, on av-
erage, the initial VI approach yield an NSC accuracy of
98.95%, a rejection rate of 5.19% and a recognition rate of
86.18%. The passive results, as before, introduce only minor
improvements, whereas active learning yields a significant
reduction in the rejection rate (from 5.19% to 2.36%), an in-
crease in the NSC accuracy (from 98.95% to 99.32%) and
an increase in the overall recognition rate (from 86.175% to
91.85%).

Discussion. A likely reason why the Bayesian approach falls
behind the frequentist one is that the former introduces sev-
eral levels of approximation. Indeed the BNN is trained us-
ing either VI or HMC, two approximate inference techniques,
resulting in an approximation of the true posterior distribu-
tion. Moreover, the resulting uncertainty measures are de-
fined by statistics of said distribution (mean and variance in
our case), which introduces an additional error as these mea-
sures do not retain full information about the BNN posterior.
The latter error propagates as we apply GP classification for
error detection, which produces another approximate solu-
tion.

However, it is not to say that the Bayesian approach does
not work well overall. Indeed, Bayesian NPM is capable of
recognizing always at least the 85% of the prediction errors
and the accuracy of the predictive monitor is always well
above 98%. Moreover, we expect the Bayesian solution to
work better in settings with noise and partial observability,
settings where the Bayesian approach should provide a more
robust performance than the frequentist one.

Another interesting aspect is that active learning seems
to enhance the classifier confidence in its predictions, as
demonstrated by an improved detection rate and a sensibly
reduced rejection rate. This is the main advantage of active
learning, besides providing a higher state classifier accuracy.

In summary, the main conclusions from our experimen-
tal analysis are:

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 19

Fig. 4: Rejection rate and recognition rate of initial rejection rule (ini-
tial), the rule obtained after one active learning iteration (active), and
the “risky” rule obtained by applying CP to the latter (risk).

– Our reachability predictors attain high accuracies, con-
sistently above 97.37% (above 99.43% for the frequen-
tist case).

– The frequentist approach overall outperforms the Bayesian
ones in all metrics and configurations, followed by VI.

– Error detection rates stay approximately constant after
retraining (active or passive). The frequentist approach
achieves staggering performance on this metric.

– The benefits of active learning are visible from an overall
reduction of the rejection rate and an overall increase in
the NSC accuracy.

6.5 CP over the error detection rule

Recall that our frequentist error detection rule Gf builds on
CP to quantify the reliability of the NSC predictions. In prin-
ciple, CP can be applied to derive prediction regions with
statistical guarantees to any supervised learning model. The
SVC Gf for error detection is no exception.

In this experiment, we show that we can apply CP to
produce prediction regions Γ ε for Gf , which, by definition,
contain the correct rejection decision with probability 1− ε.
For this purpose, we apply CP to the SVC Gaf obtained after
one active learning iteration. In particular, we derive from
Γ ε a so-called risky rejection strategy, aimed at reducing the

rejection rate: we reject only those points by which the pre-
diction region for Gaf contains only class 1, that is, when
rejecting is the only plausible decision (according to CP).
We report the results for two case studies, the helicopter
and the artificial pancreas, to show how the performances
of the risky rejection strategy compare to the ones obtained
via active learning. These two models are representative of
cases where active learning could sensibly reduce the rejec-
tion rate (artificial pancreas) and where instead it could not
(helicopter).

Note that applying CP to Gaf requires a new calibration
set, i.e., a set of points from W a

v not used to train Gaf but
rather to calibrate its predictions. The CP framework needs a
few further adjustments, discussed in detail in Appendix A.

Choosing an optimal value for ε, i.e., one that yields high
detection rates and low rejection rates, is non-trivial and
requires problem-specific tuning. In Figure 4, we compare
the above introduced risky strategy against the initial one at
different ε levels and after one active learning iteration (re-
sults are reported only for the HC and AP case studies). We
observe that, with a properly tuned ε, we can achieve the
same detection rate of the initial approach (this occurs for
ε ∈ [0.057, 0.1] in the AP model, and ε ∈ [0.03, 0.11] in
the HC model), but at the same time a lower rejection rate.
For instance, a sweet spot that most reduces the rejection
rate without sacrificing detection is ε = 0.03 for the HC and
ε = 0.057 for the AP.

7 Related Work

A number of methods have been proposed for online reach-
ability analysis that rely on separating the reachability com-
putation into distinct offline and online phases. However,
these methods are limited to restricted classes of models [21,
61], or require handcrafted optimization of the HA’s deriva-
tives [7], or are efficient only for low-dimensional systems
and simple dynamics [53].

In contrast, NSC [46] is based on learning DNN-based
classifiers, is fully automated and has negligible computa-
tional cost at runtime. In [26,51], similar techniques are in-
troduced for neural approximation of Hamilton-Jacobi (HJ)
reachability. Our methods for prediction rejection and ac-
tive learning are independent of the class of systems and the
machine-learning approximation of reachability, and thus can
also be applied to neural approximations of HJ reachability.

In [60], Yel and others present a runtime monitoring frame-
work that has similarities with our NPM approach, in that
they also learn neural network-based reachability monitors
(for UAV planning applications), but instead of using, like
we do, uncertainty measures to pin down potentially erro-
neous predictions, they apply NN verification techniques [35]
to identify input regions that might produce false negatives.

20 L. Bortolussi et al.

Thus, their approach is complementary to our uncertainty-
based error detection, but, due to the limitations of the un-
derlying verification algorithms, they can only support de-
terministic neural networks with sigmoid activations. On the
contrary, our techniques support any kind of ML-based mon-
itors, including probabilistic ones.

The work of [5,4] addresses the predictive monitoring
problem for stochastic black-box systems, where a Markov
model is inferred offline from observed traces and used to
construct a predictive runtime monitor for probabilistic reach-
ability checking. In contrast to NSC, this method focuses on
discrete-space models, which allows the predictor to be rep-
resented as a look-up table, as opposed to a neural network.

In [48], a method is presented for predictive monitoring
of STL specifications with probabilistic guarantees. These
guarantees derive from computing prediction intervals of
ARMA/ARIMA models learned from observed traces. Sim-
ilarly, we use CP which also can derive prediction inter-
vals with probabilistic guarantees, with the difference that
CP supports any class of prediction models (including auto-
regressive ones). In [27], model predictions are used to fore-
cast future robustness values of MTL specifications for run-
time monitoring. However, no guarantee, statistical or oth-
erwise, is provided for the predicted robustness. Deshmukh
and others [25] have proposed an interval semantics for STL
over partial traces, where such intervals are guaranteed to in-
clude the true STL robustness value for any bounded contin-
uation of the trace. This approach can be used in the context
of predictive monitoring but tends to produce over-conservative
intervals.

A related approach to NSC is smoothed model check-
ing [17], where Gaussian processes [50] are used to approxi-
mate the satisfaction function of stochastic models, i.e., map-
ping model parameters into the satisfaction probability of a
specification. Smoothed model checking leverages Bayesian
statistics to quantify prediction uncertainty, but faces scala-
bility issues as the dimension of the system increases. In
contrast, computing our measure of prediction reliability is
very efficient, because it is nearly equivalent to executing
the underlying predictor.

In the field of computer security, a machine learning-
based method for malware detection [37] is conceptually
very similar to our NPM method. The authors develop a tool
for assessing the performance of a classifier using the statis-
tical guarantees of conformal predictions with a self-trained
mechanism to filter out unreliable classification decisions.

Literature on uncertainty-based active learning in deep-
learning models is small and sparse, mainly because deep
learning methods rarely represent model uncertainty, and
state-of-the-art deep learning techniques require large amounts
of data, which makes active learning impractical. Several
uncertainty-based acquisition functions (i.e., functions used
to rank the informativeness of new observations for active

learning) are reviewed in [28]. In [47], a Deep Ensemble ac-
tive learning method is proposed, where uncertainty is esti-
mated from a stochastic ensemble of BNN models (obtained
via MC-Dropout, another approximate Bayesian inference
technique). Some applications of BNN in active learning
are presented in [29,23]. In these works, however, the de-
cision threshold used to identify informative samples is al-
ways chosen empirically. An important contribution of our
work is the automatic tuning of the decision rule.

A basic application of conformal predictors in active learn-
ing is presented in [39]. Our approach introduces three im-
portant improvements: a more flexible and meaningful com-
bination of confidence and credibility values, automated learn-
ing of rejection thresholds (which are instead fixed in [39]),
and refinement of the query strategy.

In [16], we presented a preliminary version of the fre-
quentist approach. In [15] we added to it an automated and
optimal method to select the rejection thresholds and an ac-
tive learning framework.

8 Conclusion

We have presented Neural Predictive Monitoring, an approach
for runtime predictive monitoring of hybrid systems that com-
plements reachability predictions with principled estimates
of the prediction uncertainty. NPM uses these estimates to
derive optimal rejection criteria that identify potentially er-
roneous predictions without knowing the true reachability
values. We have further designed an active learning strategy
that, leveraging such uncertainty-based rejection criteria, in-
creases the accuracy of the reachability predictor and re-
duces the overall rejection rate. Our approach overcomes the
computational footprint of reachability checking (infeasible
at runtime), while improving on traditional runtime verifica-
tion by being able to detect future violations in a preemptive
way.

We have devised two alternative solution methods for
NPM. The first one follows a frequentist approach, with state
classifiers expressed as deterministic DNNs and rejection
rules expressed as Support Vector Classifiers, where the re-
jection rules are optimized to detect unreliable predictions
from uncertainty measures derived via Conformal Predic-
tion. The second one follows a Bayesian approach, with a
probabilistic state classifier based on Bayesian Neural Net-
works, rejection rules given as Gaussian Process Classifiers,
and uncertainty measures extracted from statistics of the BNN
predictive distribution.

The strengths of our NPM technique are its effectiveness
in identifying and rejecting prediction errors and its compu-
tational efficiency: executing the classifier and the rule take
on the order of milliseconds. NPM’s efficiency is not di-
rectly affected by the complexity of the system under anal-

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 21

ysis but only by the complexity of the underlying learning
problem and classifier.

Our experimental evaluation demonstrates that the fre-
quentist approach outperforms the Bayesian one: the state
classifier is simpler to train and faster to evaluate, and the
error detection criteria are more accurate. Regarding BNN
inference, we found that VI scales better than HMC with
respect to the dimension of the system. The assumptions
on the prior and the necessary tuning of hyperparameters
represent important drawbacks of the Bayesian techniques,
which, however, tend to be more consistent than determinis-
tic models in regions with no data observed: here the poste-
rior distribution will typically have high variance.

Among directions for future work, we plan to extend our
approach to support more complex and real-world systems
that include noise and partial observability, settings where
the Bayesian approach can potentially provide more robust
performance than the frequentist one.

Acknowledgements This work has been partially supported by the
UK NCSC project “PM-CPS” n. 4217549, the Italian PRIN project
“SEDUCE” n. 2017TWRCNB, U.S. ONR grant N00014-20-1-2751
and U.S. NSF grants CCF-1954837, CPS-1446832, and CCF-1918225.

References

1. Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geof-
frey Irving, Michael Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283,
2016.

2. Matthias Althoff. An introduction to CORA 2015. In Proc. of
the Workshop on Applied Verification for Continuous and Hybrid
Systems, 2015.

3. R. Alur. Formal verification of hybrid systems. In Proceedings of
the Ninth ACM International Conference on Embedded Software
(EMSOFT), pages 273–278, Oct 2011.

4. Reza Babaee, Vijay Ganesh, and Sean Sedwards. Accelerated
learning of predictive runtime monitors for rare failure. In In-
ternational Conference on Runtime Verification, pages 111–128.
Springer, 2019.

5. Reza Babaee, Arie Gurfinkel, and Sebastian Fischmeister. Predic-
tive run-time verification of discrete-time reachability properties
in black-box systems using trace-level abstraction and statistical
learning. In International Conference on Runtime Verification,
pages 187–204. Springer, 2018.

6. Stanley Bak, Omar Ali Beg, Sergiy Bogomolov, Taylor T John-
son, Luan Viet Nguyen, and Christian Schilling. Hybrid automata:
from verification to implementation. International Journal on
Software Tools for Technology Transfer, 21(1):87–104, 2019.

7. Stanley Bak, Taylor T Johnson, Marco Caccamo, and Lui Sha.
Real-time reachability for verified simplex design. In Real-Time
Systems Symposium (RTSS), 2014 IEEE, pages 138–148. IEEE,
2014.

8. Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk.
Conformal prediction for reliable machine learning: theory, adap-
tations and applications. Newnes, 2014.

9. Vineeth Nallure Balasubramanian, R Gouripeddi, Sethuraman
Panchanathan, J Vermillion, A Bhaskaran, and RM Siegel. Sup-
port vector machine based conformal predictors for risk of com-
plications following a coronary drug eluting stent procedure. In
2009 36th Annual Computers in Cardiology Conference (CinC),
pages 5–8. IEEE, 2009.

10. Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Geor-
gios Fainekos, Oded Maler, Dejan Ničković, and Sriram Sankara-
narayanan. Specification-based monitoring of cyber-physical sys-
tems: a survey on theory, tools and applications. In Lectures on
Runtime Verification, pages 135–175. Springer, 2018.

11. Rukshan Batuwita and Vasile Palade. Class Imbalance Learning
Methods for Support Vector Machines, chapter 5, pages 83–99.
John Wiley & Sons, Ltd, 2013.

12. Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Ober-
meyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul
Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep univer-
sal probabilistic programming. The Journal of Machine Learning
Research, 20(1):973–978, 2019.

13. Christopher M Bishop. Pattern recognition and machine learning.
Springer, 2006.

14. Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Po-
tomkin, and Christian Schilling. Juliareach: a toolbox for set-
based reachability. In Proceedings of the 22nd ACM International
Conference on Hybrid Systems: Computation and Control, pages
39–44, 2019.

15. Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, Scott A
Smolka, and Scott D Stoller. Neural predictive monitoring. In In-
ternational Conference on Runtime Verification, pages 129–147.
Springer, 2019.

16. Luca Bortolussi, Francesca Cairoli, Nicola Paoletti, and Scott D
Stoller. Conformal predictions for hybrid system state classifica-
tion. In From Reactive Systems to Cyber-Physical Systems, pages
225–241. Springer, 2019.

17. Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti.
Smoothed model checking for uncertain continuous-time Markov
chains. Information and Computation, 247:235–253, 2016.

18. Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Opti-
mal classifier for imbalanced data using matthews correlation co-
efficient metric. PloS one, 12(6), 2017.

19. Ulf Brefeld, Peter Geibel, and Fritz Wysotzki. Support vector ma-
chines with example dependent costs. In European Conference on
Machine Learning, pages 23–34. Springer, 2003.

20. Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*:
An analyzer for non-linear hybrid systems. In International Con-
ference on Computer Aided Verification, pages 258–263. Springer,
2013.

21. Xin Chen and Sriram Sankaranarayanan. Model predictive real-
time monitoring of linear systems. In Real-Time Systems Sympo-
sium (RTSS), 2017 IEEE, pages 297–306. IEEE, 2017.

22. François Chollet et al. Keras: The Python deep learning library.
Astrophysics Source Code Library, 2018.

23. Feras Dayoub, Niko Sunderhauf, and Peter I Corke. Episode-
based active learning with bayesian neural networks. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 26–28, 2017.

24. Giacomo Deodato, Christopher Ball, and Xian Zhang. Bayesian
neural networks for cellular image classification and uncertainty
analysis. bioRxiv, page 824862, 2019.

25. Jyotirmoy V Deshmukh, Alexandre Donzé, Shromona Ghosh, Xi-
aoqing Jin, Garvit Juniwal, and Sanjit A Seshia. Robust online
monitoring of signal temporal logic. Formal Methods in System
Design, 51(1):5–30, 2017.

26. Badis Djeridane and John Lygeros. Neural approximation of PDE
solutions: An application to reachability computations. In Pro-
ceedings of the 45th IEEE Conference on Decision and Control,
pages 3034–3039. IEEE, 2006.

22 L. Bortolussi et al.

27. Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos. On-line
monitoring for temporal logic robustness. In International Con-
ference on Runtime Verification, pages 231–246. Springer, 2014.

28. Yarin Gal. Uncertainty in deep learning. PhD thesis, University
of Cambridge, 2016.

29. Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian
active learning with image data. In Proceedings of the 34th In-
ternational Conference on Machine Learning-Volume 70, pages
1183–1192. JMLR. org, 2017.

30. Alexander Gammerman and Vladimir Vovk. Hedging predic-
tions in machine learning. The Computer Journal, 50(2):151–163,
2007.

31. Sicun Gao, Soonho Kong, and Edmund M Clarke. dreal: An smt
solver for nonlinear theories over the reals. In International con-
ference on automated deduction, pages 208–214. Springer, 2013.

32. Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On
calibration of modern neural networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages
1321–1330. JMLR. org, 2017.

33. Thomas A Henzinger, Peter W Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? Journal of
computer and system sciences, 57(1):94–124, 1998.

34. Kurt Hornik, Maxwell Stinchcombe, Halbert White, et al. Multi-
layer feedforward networks are universal approximators. Neural
networks, 2(5):359–366, 1989.

35. Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas,
and Insup Lee. Verisig: verifying safety properties of hybrid sys-
tems with neural network controllers. In Proceedings of the 22nd
ACM International Conference on Hybrid Systems: Computation
and Control, pages 169–178, 2019.

36. Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and
Lawrence K Saul. An introduction to variational methods for
graphical models. Machine learning, 37(2):183–233, 1999.

37. Roberto Jordaney, Kumar Sharad, Santanu K Dash, Zhi Wang, Da-
vide Papini, Ilia Nouretdinov, and Lorenzo Cavallaro. Transcend:
Detecting concept drift in malware classification models. In 26th
USENIX Security Symposium (USENIX Security 17), pages 625–
642, 2017.

38. David JC MacKay. A practical bayesian framework for backprop-
agation networks. Neural computation, 4(3):448–472, 1992.

39. Lázaro Emı́lio Makili, Jesús A Vega Sánchez, and Sebastián
Dormido-Canto. Active learning using conformal predictors: ap-
plication to image classification. Fusion Science and Technology,
62(2):347–355, 2012.

40. Pascal Massart. The tight constant in the dvoretzky-kiefer-
wolfowitz inequality. The annals of Probability, pages 1269–
1283, 1990.

41. Radford M Neal et al. MCMC using Hamiltonian dynamics.
Handbook of markov chain monte carlo, 2(11):2, 2011.

42. Nicola Paoletti, Kin Sum Liu, Scott A Smolka, and Shan Lin.
Data-driven robust control for type 1 diabetes under meal and
exercise uncertainties. In International Conference on Compu-
tational Methods in Systems Biology, pages 214–232. Springer,
2017.

43. Harris Papadopoulos. Inductive conformal prediction: Theory and
application to neural networks. In Tools in artificial intelligence.
InTech, 2008.

44. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural
Information Processing Systems, pages 8024–8035, 2019.

45. D. Phan, N. Paoletti, T. Zhang, R. Grosu, S. A. Smolka, and S. D.
Stoller. Neural state classification for hybrid systems. ArXiv e-
prints, July 2018.

46. Dung Phan, Nicola Paoletti, Timothy Zhang, Radu Grosu, Scott A.
Smolka, and Scott D. Stoller. Neural state classification for hybrid

systems. In Automated Technology for Verification and Analysis,
volume 11138 of Lecture Notes in Computer Science, pages 422–
440, 2018.

47. Remus Pop and Patric Fulop. Deep ensemble bayesian active
learning: Addressing the mode collapse issue in monte carlo
dropout via ensembles. arXiv preprint arXiv:1811.03897, 2018.

48. Xin Qin and Jyotirmoy V Deshmukh. Predictive monitoring for
signal temporal logic with probabilistic guarantees. In Proceed-
ings of the 22nd ACM International Conference on Hybrid Sys-
tems: Computation and Control, pages 266–267. ACM, 2019.

49. Dieter Rasch, Jurgen Pilz, LR Verdooren, and Albrecht Gebhardt.
Optimal experimental design with R. Chapman and Hall/CRC,
2011.

50. Carl Edward Rasmussen and Christopher KI Williams. Gaussian
processes for machine learning, volume 1. MIT press Cambridge,
2006.

51. Vicenc Rubies Royo, David Fridovich-Keil, Sylvia Herbert, and
Claire J Tomlin. Classification-based approximate reachability
with guarantees applied to safe trajectory tracking. arXiv preprint
arXiv:1803.03237, 2018.

52. David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Techni-
cal report, California Univ San Diego La Jolla Inst for Cognitive
Science, 1985.

53. Gerald Sauter, Henning Dierks, Martin Fränzle, and Michael R
Hansen. Lightweight hybrid model checking facilitating online
prediction of temporal properties. In Proceedings of the 21st
Nordic Workshop on Programming Theory, pages 20–22, 2009.

54. Lui Sha. Using simplicity to control complexity. IEEE Software,
18(4):20–28, 2001.

55. Glenn Shafer and Vladimir Vovk. A tutorial on conformal pre-
diction. Journal of Machine Learning Research, 9(Mar):371–421,
2008.

56. Paolo Toccaceli and Alexander Gammerman. Combination of
inductive mondrian conformal predictors. Machine Learning,
108(3):489–510, 2019.

57. Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph,
Dawen Liang, and David M Blei. Edward: A library for prob-
abilistic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787, 2016.

58. Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge
university press, 2000.

59. Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic
learning in a random world. Springer Science & Business Media,
2005.

60. E. Yel, T. J. Carpenter, C. Di Franco, R. Ivanov, Y. Kantaros,
I. Lee, J. Weimer, and N. Bezzo. Assured runtime monitoring
and planning: Toward verification of neural networks for safe au-
tonomous operations. IEEE Robotics & Automation Magazine,
27(2):102–116, 2020.

61. Hansol Yoon, Yi Chou, Xin Chen, Eric Frew, and Sriram Sankara-
narayanan. Predictive runtime monitoring for linear stochastic
systems and applications to geofence enforcement for uavs. In In-
ternational Conference on Runtime Verification, pages 349–367.
Springer, 2019.

Appendix A Conformal Predictions on SVC

A.1 Mondrian approach in Conformal Predictions

CP works as explained in Section 3.1. Given a test point x∗,
we compute a p-value for every possible class and, given
a significance level ε, the prediction region Γ ε∗ is the set
of labels whose p-value exceeds the significance level. In

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 23

practice, the prediction region for each test point can be in-
terpreted as the set of classes that guarantees that the true
class is not in the set no more than a fraction ε of the times.
This is called the validity property. It provides a statisti-
cal guarantee on the expected number of errors, i.e., num-
ber of times the true label is not in the prediction set. The
validity property, as stated above, guarantees an error rate
over all possible labels, not on per-label basis. The latter can
be achieved with a CP variant, called label-conditional CP,
which is in turn a variant of the Mondrian CP approach. The
only change is in the calculation of the p-values. The p-value
associated to class yj on a test point x∗ is defined as:

pj∗ =
|{zi ∈ Zc : yi = yj , αi > αj∗}|
|{zi ∈ Zc : yi = yj}|+ 1

+ (25)

+ θ
|{zi ∈ Zc : yi = yj , αi = αj∗}|+ 1

|{zi ∈ Zc : yi = yj}|+ 1
. (26)

In words, we consider only the αi corresponding to exam-
ples with the same label yj as the hypothetical label that we
are assigning at the test point.

Label-conditional validity [56] is extremely important
when the CP is applied to an unbalanced dataset, as in our
case Wv . It has been shown empirically, that, with the plain
validity property, the overall error rates tend to the chosen
significance level, but the minority class are disproportion-
ally affected by errors. The Mondrian approach ensures that,
even for the minority class, the expected error rate will tend
to the chosen significance level ε. We refer the reader to the
existing literature [30,55] for further details.

A.2 SVC non-conformity measure

CP relies on the definition of a nonconformity measure, which
captures the extent to which a given input data conforms
to the associated class. Every classification algorithm has
a specific non-conformity measure, that makes the CP al-
gorithm perform well in each framework. SVC is a kernel-
based method that transforms the original data by mapping
them into a new space, called feature space, via a feature
map φ(x). By doing so, patterns that are not linearly separa-
ble, can be converted to be linearly separable in the feature
space [13]. The linear decision boundary for a binary SVC is
defined as d(x) = a·φ(x)+b = 0, for x in the original space.
Support vectors are the data points that lie closest to the de-
cision hyper-plane. SVC maximizes the margin around the
separating hyperplane and the decision function, which de-
pends only on the support vectors. For ease of notation, we
are assuming Y = {−1, 1}, rather than {0, 1}. The distance
of a point x∗ from the separating hyperplane of the SVC is
given by:

dh∗ =
|d(x∗)|
||a||

,

Fig. 5: Results as in Figure 4 for the IP model. A good choice for ε is
around 0.08.

where d(x∗) is SVC decision function d(·) evaluated in x∗
and ||a|| is the weighted sum of the support vectors. Then,
the distance to the margin boundary of the class under con-
sideration is given by:

dm∗ =
|d(x∗)| − 1

||a||
.

The non-conformity measure is thus defined as

αj∗ = exp(−dm∗).

Such definition is presented in [9]. In case of transductive
CP (TCP), the NCM can be derived directly from the value
of Lagrange multipliers associated to the support vectors, as
proposed in [55].

Remark 5 When CP are applied to the SVC, the input space
is the uncertainty domain U, rather than X. However, for
ease of presentation, we stick to the p-values notation intro-
duced in Section 3.1.

Appendix B Proofs

Proposition 1 For the NCF function (6), if Γ ε∗ = {yj1},
then yj1 = F (x∗).

Proof Suppose by contradiction that Γ ε∗ = {yj1} and yj1 6=
F (x∗) = yj2 . Then, by Equation 5, this implies that pj1∗ > ε

and that pj2∗ ≤ ε, i.e., pj1∗ > pj2∗ . In turn, this implies that the
corresponding NCF scores are such that αj1∗ ≤ αj2∗ (the in-
equality is not strict due to the tie-braking factor θ in Equa-
tion 4). But according to the definition of our NCF func-
tion (6), this means that fyj1 (x∗) ≥ fyj2 (x∗), i.e., that the
likelihood of the non-predicted class yj1 is not below than
that of the predicted class yj2 , which, by Definition 4 and the
assumption of well-formed discriminant, is a contradiction.

24 L. Bortolussi et al.

Appendix C Models and case studies

We briefly introduce the case studies used in our experimen-
tal evaluation.

Spiking Neuron. This model describes the evolution of a
neuron’s action potential. It is a deterministic HA with two
continuous variables, one mode, one transition and nonlin-
ear polynomial dynamics. We consider the unsafe set D de-
fined by v2 ≤ 68.5, expressing that the neuron should not
undershoot its resting potential. The time bound for the reach-
ability property is T = 20.

Inverted Pendulum. We consider the classic inverted pendu-
lum on a cart nonlinear system. We consider the unsafe set
D defined by |θ| > π/4, corresponding to the safety prop-
erty that keeps the pendulum within 45◦ of the vertical axis.
The time bound is T = 5.

Artificial Pancreas For the AP model, the unsafe set D cor-
responds to hypoglycemia states, i.e., D = BG ≤ 3.9

mmol/L, where BG is the blood glucose variable. The state
distribution considers uniformly distributed values of plasma
glucose and insulin. The insulin control input is fixed to the
basal value. The time bound is T = 240.

Triple Water Tank For the TWT model, D is given by states
where the water level of any of the tanks falls outside a given
safe interval I , i.e., D = ∨3i=1xi 6∈ I , where xi is the water
level of tank i. The state distribution considers water lev-
els uniformly distributed within the safe interval. The time
bound is T = 1.

Cruise Control. It is a nondeterministic HA with 3 contin-
uous variables, 6 modes, 11 transitions, and nonlinear poly-
nomial dynamics. The unsafe set D is defined by v ≤ −1,
which expresses that the vehicle’s speed should not be be-
low a reference speed by 1m/s or more. The reachability
time bound is T = 10.

Helicopter Controller. We augment the 28-variable helicopter
controller available on SpaceEx website9 with a variable
z denoting the helicopter’s altitude. The dynamics of z is
given by ż = vz , where vz is the vertical velocity and repre-
sented by variable x8. The unsafe set D is defined by z ≤ 0.
The time bound is T = 5. Since this model is large and pub-
licly available on SpaceEx website, we do not provide the
details here.

9 http://spaceex.imag.fr/

y

x

M F
➝

�

l

m

Fig. 6: Schematic of the inverted pendulum on a cart. Source:
Wikipedia.

C.1 Spiking Neuron

We consider the spiking neuron model on the Flow* web-
site10. It is a hybrid system with one mode and one jump.
The dynamics is defined by the ODE

{
v̇2 = 0.04v22 + 5v2 + 140− v1 + I

v̇1 = a · (b · v2 − v1)
(27)

The jump condition is v2 ≥ 30, and the associated reset
is v′2 := c ∧ v′1 := v1 + d, where, for any variable x, x′

denotes the value of x after the reset.
The parameters are a = 0.02, b = 0.2, c = −65, d = 8,

and I = 40 as reported on the Flow* website. We consider
the unsafe state set D = {(v2, v1) | v2 ≤ 68.5}. This cor-
responds to a safety property that can be understood as the
neuron does not undershoot its resting-potential region of
[−68.5,−60]. The domain for sampling is 68.5 < v2 ≤
30 ∧ 0 ≤ v1 ≤ 25. The time bound for the reachability
property was set to T = 20.

C.2 Inverted Pendulum

We consider the control system for an inverted pendulum on
a cart. This is a classic, widely used example of a non-linear
system. As shown in Fig. 6, the control input F is a force
applied to the cart with the goal of keeping the pendulum in
upright position, i.e., θ = 0. The dynamics is given by

J · θ̈ = m · l · g · sin(θ)−m · l cos(θ) · F (28)

where J is the moment of inertia, m is the mass of the pen-
dulum, l is the length of the rod, and g is the gravitational
acceleration.

We set J = 1, m = 1/g, l = 1, and let u = F/g. Eq. 28
becomes

{
θ̇ = ω

ω̇ = sin(θ)− cos(θ) · u
(29)

10 https://flowstar.org/examples/

https://en.wikipedia.org/wiki/Inverted_pendulum
https://flowstar.org/examples/

Neural Predictive Monitoring and a Comparison of Frequentist and Bayesian Approaches 25

0 2 4 6 8 10 12 14 16 18 20

Time

0

π/16

π/8

3π/16

π/4

5π/16

θ
(t

)

Fig. 7: An evolution of the inverted pendulum state variable θ from
initial state (θ0, ω0) = (0.5, 1.0).

We consider the control law of Eq. 30. Fig. 7 shows an
evolution of θ under this control law. We consider the unsafe
state set D = {(θ, ω) | θ < −π/4 ∨ θ > π/4}. This unsafe
region corresponds to the safety property that keeps the pen-
dulum within 45◦ of the vertical axis. The domain for sam-
pling is θ ∈ [−π/4, π/4] ∧ ω ∈ [−1.5, 1.5]. We used time
bound T = 5.

u =



2 · ω + θ + sin(θ)

cos(θ)
, E ∈ [−1, 1], | ω | + | θ |≤ 1.85

0, E ∈ [−1, 1], | ω | + | θ |> 1.85

ω

1+ | ω |
cos(θ), E < −1

−ω
1+ | ω |

cos(θ), E > 1

(30)

where E = 0.5 · ω + (cos(θ)− 1) is the pendulum energy.

C.3 Cruise Control

The cruise control is a nondeterministic HA with three con-
tinuous variables, six modes, eleven transitions, and nonlin-
ear polynomial dynamics. It is shown in Fig. 8. The contin-
uous variable v denotes the difference between the vehicle’s
speed and the cruise speed in m/s, x is the integral term for
the proportional-integral (PI) controller in mode 5, and t is
a clock.

In mode 5, the PI controller tries to stabilize v to zero,
i.e., to match the vehicle’s speed with the cruise speed. Mode
3 and 4 represent the first level of brakes where decelera-
tion increases smoothly from 1.2 to 2.5 m/s2 in mode 4 and
stays constant at 2.5 m/s2 in mode 3. Mode 1 and 2 repre-
sent the second level of brakes and work in the same way
but with higher starting and peak deceleration. Mode 6 con-
stantly accelerates the vehicle. The guards are designed to
prevent chattering or Zeno behavior.

The unsafe set D is defined by v ≤ −1, which ex-
presses that the vehicle’s speed should not be below a ref-
erence speed by 1 m/s or more. The reachability time bound
is T = 10.

�

�� � �� � 2.5

� � 0

�� � 1

15
 �
 40

0
 �
 2.5

�

�� � �5

� � 0

�� � 0

15
 �
 40

� � 2.5

� � 2.5 ∧

15
 �
 40

�

�� � �� � 1.2

� � 0

�� � 0.5

5
 �
 20

0
 �
 1.3

0
 �
 2.5 ∧

15
 �
 16

� ≔ 0

�

�� � �2.5

� � 0

�� � 0

5
 �
 20

� � 1.3

� � 1.3 ∧

18
 �
 20

� ≔ 0
� � 2.5 ∧

15
 �
 16

� ≔ 0

0
 �
 1.3 ∧

18
 �
 20

� ≔ 0

� � 1.3 ∧

5
 �
 20

�

�� � �0.001
 � 0.052�

� � �

�� � 0

�15
 �
 15

�500

 500

�

�� � 1.5

� � 0

�� � 0

�20
 �
 �5

0
 �
 1.3 ∧

5
 �
 11

 ≔ 0

13
 �
 15 ∧

�500

 500

� ≔ 0

�6
 �
 �5 ∧

�500

 500

 ≔ 0

�15
 �
 �14 ∧

�500

 500

� � 1.3 ∧

5
 �
 11

 ≔ 0

Fig. 8: Hybrid automaton for the cruise control system. Invariants are
in blue, guards are in red, and reset mappings are in green.

�

�� � � � 2.5

� � 0

�� � �1

15 � � � 40
0 � � � 2.5

�

�� � 5

� � 0

�� � 0

15 � � � 40

� � 2.5

�

�� � � � 1.2

� � 0

�� � �0.5

5 � � � 20
0 � � � 1.3

� � 0
15 � � � 16

� ≔ 0, 2.5

�

�� � 2.5

� � 0

�� � 0

5 � � � 20

� � 1.3

� � 0

18 � � � 20

� ≔ 1.3

� � 0

15 � � � 16
� ≔ 2.5

� � 0

18 � � � 20

� ≔ �0, 1.3�

�

�� � 0.001
 � 0.052�

� � ��

�� � 0

�15 � � � 15
�500 �
 � 500

�

�� � �1.5

� � 0

�� � 0

�20 � � � �5

 � 0

0 � � � 1.3

5 � � � 11

 ≔ �500,500

� � 0

13 � � � 15

�500 �
 � 500

 � 0

�6 � � � �5

 ≔ �500,500
�15 � � � �14
�500 �
 � 500

 � 0

� � 1.3

5 � � � 11

 ≔ �500,500
5 � � � 20�5 � � � 40

Fig. 9: Reverse hybrid automaton for the cruise control system. Invari-
ants are in blue, guards are in red, and reset mappings are in green.

Appendix D Sensitivity analysis

Fig. 10: Sensitivity analysis: for each model the width and depth of
the DNN has been varied. The colormap indicates the accuracy of the
predictive monitor.

Appendix E Labeling data

Labeling a state x of an HA M means deciding whether
M |= Reach(D,x, T), i.e., solving a reachability check-
ing problem. For nondeterministic HAs, we use an SMT
solver that supports bounded model checking of hybrid sys-
tems. In particular, we choose dReal [31], which provides
sound unsatisfiability proofs. but approximates satisfiability
up to a user-defined precision (δ-satisfiability). So, we la-
bel x as negative (positive) ifM |= Reach(D,x, T) (M |=
¬Reach(D,x, T)) is unsatisfiable. If both Reach(D,x, T)
and ¬Reach(D,x, T) are δ-sat, then the model checker can-
not make a decision about x, and in this case, we choose

26 L. Bortolussi et al.

to be conservative and mark the state as positive. However,
choosing a small δ makes this situation less likely to happen.

In case of deterministic systems it is sufficient to simu-
late the system with an ODE solver and use a event-detection
method to check guard conditions and whether the trajectory
reaches D.

During dataset generation, we sample the HA states to
label using either a uniform sampling or a balanced sam-
pling strategy. The former ensures that all states in X \ D
are equiprobable. The latter produces a balanced amount of
positive and negative samples, and is used in cases when
the unsafe region D is a small subset of the state space,
where a uniform sampling strategy would result in imbal-
anced datasets with insufficient positive samples. See [45]
for more details.

	Introduction
	Problem Formulation
	Uncertainty quantification in Neural Predictive Monitoring
	Uncertainty-based Rejection Criteria
	Active Learning
	Experimental Results
	Related Work
	Conclusion
	Appendix Conformal Predictions on SVC
	Appendix Proofs
	Appendix Models and case studies
	Appendix Sensitivity analysis
	Appendix Labeling data

