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ABSTRACT
The popularity of rule-based flocking models, such as Reynolds’
classic flocking model, raises the question of whether more declar-
ative flocking models are possible. This question is motivated by
the observation that declarative models are generally simpler and
easier to design, understand, and analyze than operational models.
We introduce a very simple control law for flocking based on a
cost function capturing cohesion (agents want to stay together) and
separation (agents do not want to get too close). We refer to it as
declarative flocking (DF). We use model-predictive control (MPC)
to define controllers for DF in centralized and distributed settings. A
thorough performance comparison of our declarative flocking with
Reynolds’ model, and with more recent flocking models that use
MPC with a cost function based on lattice structures, demonstrate
that DF-MPC yields the best cohesion and least fragmentation, and
maintains a surprisingly good level of geometric regularity while
still producing natural flock shapes similar to those produced by
Reynolds’ model. We also show that DF-MPC has high resilience
to sensor noise.

1 INTRODUCTION
Flocking is a collective behavior exhibited by a large number of
interacting agents possessing a common group objective [4]. The
term is most commonly associated with birds, and more recently,
drones. Examples include foraging for food, executing a predator-
avoidance maneuver, and engaging in migratory behavior.

With the introduction of Reynolds’ model [7, 8], rule-based con-
trol became the norm in the flocking community. Specifically, in
this model, at each time-step, each agent executes a control law
given in terms of the weighted sum of three competing forces to
determine its next acceleration. Each of these forces has its own
rule: separation (keep a safe distance away from your neighbors),
cohesion (move towards the centroid of your neighbors), and align-
ment (steer toward the average heading of your neighbors). As
the descriptions suggest, these rules are executed by each agent
in a distributed environment with limited-range sensing and no
communication.

The popularity of Reynolds’ model and its many variants raises
the question: Is there a more abstract declarative form of control for
flocking? This question is important because declarative models

are generally simpler and easier to design, understand, and analyze
than operational models. This is analogous to declarative programs
(e.g., functional programs and logic programs) being easier to write
and verify than imperative programs.

We show that the answer to this question is indeed positive by
providing a very simple control law for flocking based on a cost
function comprising two main terms: cohesion (the average squared
distance between all pairs of agents) and separation (a sum of in-
verse squared distances, except this time between pairs of agents
within each other’s sensing range). That is it. For example, no term
representing velocity alignment is needed. The cost function speci-
fies what we want as the goal, and is hence declarative. In contrast,
the update rules in Reynolds’ model aim to achieve an implicit goal
and hence are operational. Executing declarative control amounts
to finding the right balance between attracting and repelling forces
between agents. We refer to this approach as Declarative Flocking
(DF). We use MPC (model-predictive control) to define controllers
for DF, and refer to this approach as DF-MPC. We define a cen-
tralized version of DF-MPC, which requires communication, and a
distributed version, which does not.

Previous MPCs for flocking exist, e.g., [11–13]. Most of these
MPCs are designed to conform to the α-lattice model of flocking
proposed in [4]. α-lattices impose a highly regular structure on
flocks: all neighboring agents are distance d apart, for a specified
constant d . This kind of structure is seen in some settings, such as
beehives, but is not expected in many other natural and engineered
settings, and it is not imposed by Reynolds’ model.

In this paper, we show, via a thorough performance evaluation,
how centralized and distributed DF-MPC compare to Reynolds’
rule-based approach [7, 8], Olfati-Saber’s potential-based approach
[4], a variant of Zhan and Li’s centralized lattice-based MPC ap-
proach [10, 11], and Zhang et al.’s distributed lattice-based MPC
approach [12].We consider performancemeasures that capturemul-
tiple dimensions of flocking behavior: number of sub-flocks (flock
fragmentation), maximum sub-flock diameter (cohesion), velocity
convergence, and a new parameter-free measure of the geometric
regularity of the formation.

Our experimental results demonstrate that DF-MPC yields the
best cohesion and least fragmentation, and produces natural flock
shapes like those produced by Reynolds’ model. Also, distributed
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DF-MPCmaintains a surprisingly good level of geometric regularity.
We also analyze the resiliency of DF-MPC and the lattice-based
MPC approaches by considering the impact of sensor noise. Our
results demonstrate a remarkably high level of resiliency on the
part of DF-MPC in comparison with these other approaches.

2 MODELS OF FLOCKING BEHAVIOR
We consider a set of dynamic agents B = {1, . . . ,n} that move
according to the following discrete-time equation of motion:

xi (k + 1) = xi (k) + dT · vi (k), vi (k) ∈ V (1)
vi (k + 1) = vi (k) + dT · ai (k), ai (k) ∈ A, (2)

where xi (k),vi (k),ai (k) ∈ Rm are respectively position, velocity
and acceleration of agent i ∈ B in the m-dimensional space at
step k , and dT ∈ R+ is the time step. We consider physical con-
straints on velocities and accelerations, described by the sets V
and A, respectively, which are defined by V = {v | |v | ≤ v̄} and
A = {a | |a | ≤ ā}, where v̄ and ā limit the allowed magnitude of
the velocity and acceleration vectors, respectively.

The configuration of all agents is described by the vector x(k) =
[xT1 (k) . . . x

T
n (k)]T ∈ Rm ·n . Let v(k) = [vT1 (k) . . . v

T
n (k)]T ∈

Rm ·n , and a(k) = [aT1 (k) . . . a
T
n (k)]T ∈ Rm ·n . Then the equation

of motion for all agents can be expressed as

x(k + 1) = x(k) + dT · v(k), (3)
v(k + 1) = v(k) + dT · a(k), (4)

The local neighborhood of agent i is defined by the set of other
agents, called neighbors, within a given distance from i , mimicking
the agent’s visibility sphere. For an interaction radius r > 0 and
configuration x, the set of spatial neighbors of agent i , Ni (x) ⊆ B,
is given by:

Ni (x) =
{
j ∈ B | j , i ∧ ∥xi − x j ∥ < r

}
, (5)

where ∥ · ∥ denotes the Euclidean norm.
For configuration x ∈ Rm ·n , we define the associated proximity

net G(x) = (B, E(x)) as the graph that connects agents within their
interaction radius:

E(x) =
{
(i, j) ∈ B × B | ∥xi − x j ∥ < r , i , j

}
, (6)

Definition 2.1 (α-lattice [4]). A configuration x ∈ Rm ·n is called
α -lattice if for all i ∈ B and all j ∈ Ni (x), ∥xi − x j ∥ = d , where d ∈
R+ is the scale of the α-lattice. For tolerance δ ∈ R+, a configuration
x ∈ Rm ·n is called a quasi α -lattice if for all i ∈ B and all j ∈ Ni (x),
|∥xi − x j ∥ − d | ≤ δ .

2.1 Reynolds’ rule-based model
In Reynolds’ rule-based distributed model [7, 8], each agent i ∈ B
updates its acceleration ai (k) at step k by considering the following
three components :

(1) Alignment: agents match their velocities with the average
velocity of nearby agents.

(2) Cohesion: agents move towards the centroid of the agents in
the local neighborhood.

(3) Separation: agents move away from nearby neighbors.

a) b)

Figure 1: Examples of α-lattice a) and quasi α-lattice b). Solid
lines connect agents in the sameneighborhood that have dis-
tance d . Dashed lines connect those with have distance d ± ϵ
for ϵ ≤ δ (the tolerance).

2.2 Olfati-Saber’s potential-based model
In potential-based flocking models, the interaction between a pair
of agents is modeled by a potential field. It is assumed that an
agent is a point source, and it has a potential field around it, which
exerts a force, equal to its gradient, on other agents in its range
of influence.In the work of Olfati-Saber [4], the potential function
ψα for a pair of agents has its minimum at the desired inter-agent
distance d of the desired α-lattice. Outside the interaction radius r ,
the potential function is constant, so the potential field exerts no
force.

2.3 MPC-based models
Model predictive control (MPC) [1] is a well-established control
technique that works as follows: at each time step k , it computes
the optimal control sequence (agents’ accelerations in our case)
that minimizes a given cost function with respect to a predictive
model of the controlled system and a finite prediction horizon of
length T , i.e., from step k + 1 to k +T . Then, the first control input
of the optimal sequence is applied (the remainder of the sequence
is unused), and the algorithm proceeds with a new iteration.

Two main kinds of MPC-based flocking models exist, centralized
and distributed. Please refer to the full version of this paper on
arxiv.org for further details.

3 DECLARATIVE FLOCKING
This section introduces centralized and distributed versions of our
Declarative Flocking (DF) model, and presents a flocking algorithm
based on MPC. Our formulation is declarative in that it consists of
just two simple terms: (1) a cohesion term based on the average
squared distance between pairs of agents, to keep the flock together,
and (2) a separation term based on the inverse squared distances
between pairs of agents, to avoid crowding. These two terms repre-
sent opposing forces on agents, causing agents to move towards
positions in which these forces are balanced.

3.1 Centralized DF model
The cost function J for our centralized DF model contains the two
terms described above, with the cohesion term considering all pairs
of agents, and the separation term considering only pairs of agents
that are neighbors. The weight ω of the separation term provides
control over the density of the flock.

JC (x) = 2
|B| · (|B| − 1) ·

∑
i ∈B

∑
j ∈B,i<j

∥xi j ∥2 + ω ·
∑

(i, j)∈E(x)

1
∥xi j ∥2
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The control law is Eq. (??) with J (k) equal to∑T
t=1 J

C (x(k + t | k)).

3.2 Distributed DF model
The cost function J for our distributed DF model is similar to the
centralized one, except that both terms are limited to consider pairs
of agents that are neighbors.

JD
i (x) = 1

|Ni (k)|
·

∑
j ∈Ni (k)

∥xi j ∥2 + ω ·
∑

j ∈Ni (k )

1
∥xi j ∥2 (7)

The control law for agent i is Eq. (??) with Ji (k) equal to∑T
t=1 J

D
i (x(k + t | k)).

4 MEASURES OF FLOCKING PERFORMANCE
We introduce four key measures of flocking performance. A single
measure is insufficient, because flocking is indeed characterized by
multiple desirable properties, such as aligned velocities and cohe-
sion. Olfati-Saber introduces four main properties for flocking [4],
informally described as:

(1) the group of agents stays connected in a unique flock, i.e., no
sub-flocks and fragmentation should emerge;

(2) the group remains cohesive, in a close-knit formation;
(3) the group moves in a coherent way as if it was a unique body,

i.e., agents’ velocities are aligned; and
(4) the group maintains a regular geometry (in the α-lattice

sense).
We introduce the following four measures to capture these four
requirements. An important concept in these definitions is a sub-
flock, which is a set of interacting agents that is too far apart from
other agents to interact with them. Formally, a sub-flock in a config-
uration x corresponds to a connected component of the proximity
net G(x). Let CC(x) ⊆ 2B be the set of connected components of
the proximity net G(x).

(1) The number of connected components of the proximity net
quantifies connectedness—or, equivalently, fragmentation—of the
flock. There is no fragmentation when |CC(x)| = 1. Fragmentation
exists when |CC(x)| > 1. Fragmentation may be temporary or, if
sub-flocks move in different directions, permanent.

(2) The maximum component diameter, denoted D(x), quantifies
cohesion. It is defined by

D(x) = max
B′∈CC(x)

D(x,B′) (8)

where D(x,B′) is the diameter of connected component B′:

D(x,B′) = max
(i, j)∈B′×B′

i,j

∥xi j ∥. (9)

(3) The velocity convergence measure, adopted from [12], quanti-
fies the average discrepancy between each agent’s velocity and the
average velocity of the flock. In particular, we extend the measure
of [12] to average velocity convergence values across sub-flocks:

VC(x, v) =

∑
B′∈CC(x)




∑i ∈B′ vi −
(∑

j∈B′ vj
|B′ |

)


2/
|B′ |

|CC(x)| (10)

(4) Tomeasure the regularity of the geometric structure of a flock,
as reflected in the inter-agent spacing, we introduce a parameter-
free and model-independent irregularity measure I (x). For a con-
nected component (sub-flock) B′, it is defined as the sample stan-
dard deviation of the distances between each agent in B′ and its
closest neighbor. Thus, the measure penalizes configurations where
there is dispersion in inter-agent distances, while not imposing any
fixed distance between them (unlike α-lattices).

Let CC ′(x) = CC(x) \⋃i ∈B {{i}} be the set of connected com-
ponents where isolated agents are excluded. For |CC ′(x)| = 0 (or
equivalently, |CC(x)| = |B|), i.e., all agents are isolated, we set the
irregularity I (x) = 0, which is the optimal value. This reflects the
fact that a single point is a regular structure on its own. Moreover,
such a configuration is already highly penalized by |CC(x)| and
VC(v). For |CC ′(x)| > 0, the measure is defined by:

I (x) =
∑

B′∈CC ′ σ
(⊎

i ∈B′ minj,i ∥xi j ∥
)

|CC ′ | . (11)

where σ (S) is the standard deviation of the multiset of samples S
and

⊎
is the sum operator (or disjoint union) for multisets.

An α-lattice (see Def. 2.1) has the optimal value of I (x), i.e.,
I (x) = 0, since all neighboring agents are located at the same
distanced from each other, leading to zero standard deviation for the
term σ ({d,d, . . . ,d}). This shows that I (x) captures the regularity
underlying the concept of α-lattice.

We introduce this measure because previous measures of regu-
larity or irregularity, such as those in [4, 11, 12], measure deviations
from an α-lattice with a specified inter-agent distance d and are
therefore inapplicable to flocking models, such as Reynolds’ model
and our DF models, that are not based on α-lattices and do not
have a specified target inter-agent distance. Also, our irregularity
measure is more flexible than those based on α-lattices, because it
gives an optimal score to some configurations that are geometrically
regular but not α-lattices.

5 PERFORMANCE EVALUATION
We compare the performance of the models of Section 2 with the
newly introduced DF flocking models in the 2-dimensional setting.
In the first set of experiments (Section 5.1), we evaluate the per-
formance measures illustrated in Section 4. In the second set of
experiments (Section 5.2), we analyze the resilience of the algo-
rithms to sensor noise.

Unless otherwise specified, the population size is n = 30, the
simulation length is 100, dT = 0.3, v̄ = 8, ā = 1, r = 8.4, d = 7,
T = 3, and λ = 1. For further details about experimental settings
please refer to the full version on arxiv.org.

5.1 Performance Comparison of Flocking
Algorithms

Fig. 2 shows examples of final formations for all flocking models.
In Fig. 3, we compare the performance measures averaged over

100 runs for each flocking model. Regarding the number of con-
nected components (sub-flocks), our centralized DF-MPC registers
the best behavior, rapidly stabilizing to an average of 1 component
(see plot a). Our distributed DF-MPC and Reynolds’ model have
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Figure 2: Examples of final formations for different flocking
models. The red dots are the agent positions. The blue lines
denote the agent velocity vectors

comparable performance, reaching an average number of sub-flocks
below 1.4. The lattice-based MPCs and Olfati-Saber instead lead
to constant fragmentation, with more than 2 sub-flocks for the
distributed lattice-based MPC, 6 for the centralized lattice-based
MPC, and more than 8 for Olfati-Saber’s model.

This ranking is confirmed by the diameter measure (plot b),
where our centralized and distributed DF-MPC and Reynolds’ model
show the best cohesion, outperforming the lattice-based approaches.
Recall that this measure indicates the maximum diameter over all
sub-flocks, not the diameter of the entire population. As a conse-
quence, fragmentation tends to improve diameter values since it
produces sub-flocks with fewer individuals. This explains why our
distributed DF-MPC performs better on this measure than the cen-
tralized version, and similarly why Olfati-Saber’s model has smaller
diameter measure than centralized lattice-basedMPC, which in turn
has smaller diameter measure than the distributed variant.

As expected, Olfati-Saber’s model and the lattice-based MPCs
have very good performance for irregularity (plot c), since they are
designed to achieve the regular geometric formation of α-lattice.
Surprisingly, our distributed DF-MPC performs almost as well as
them on this measure. Centralized DF-MPC and Reynolds’ model
have the least regular formations.

For velocity convergence (plot d), we find that all models perform
comparably well and are able to achieve flocks with consistent
velocities fairly quickly after an initial spike.

5.2 Robustness to Sensing Noise
To evaluate the resiliency of the models to sensor noise, we per-
formed 20 runs for each model at 10 noise levels. The noise levels
are numbered from 1 to 10, and noise level i has σx = 0.2i and
σv = 0.1i . For each performance metric, we averaged its final val-
ues over 20 runs for each noise level. The results are plotted in Fig. 4.

Of the six models, Olfati-Saber’s model is the most vulnerable to
sensing noise: the number of sub-flocks |CC | in Olfati-Saber’s model
quickly increases to nearly 30, rendering other metrics irrelevant.
The lattice-basedMPCmodels also exhibit high fragmentation, lead-
ing to nominally good but largely irrelevant values for the other
performancemetrics. Our distributed DF-MPC and Reynolds’ model
have the best resiliency to sensing noise, with both models exhibit-
ing similar profiles in all metrics. While the irregularity and velocity
convergence measures increase with noise level, as expected, both
models remarkably maintain almost a single connected component
with a nearly constant component diameter for all 10 noise levels,
with DF-MPC achieving a smaller diameter than Reynolds’ model.

6 RELATEDWORK
Reynolds [7] introduced the first rule-based approach for simulation
of flocking behavior. With three simple rules, his model is able to
capture complex flocking behaviors of animals. Similar rule-base
flocking models are also proposed by Pearce et al. [5] and Cucker
and Dong [2].

Artificial potential fields have also been used extensively in
flocking models. For example, Tanner et al. [9]. Ogren et.al. [6]
use the motion of the leader to guide the motion of the flock; the
leader’s motion is independent.

La and Sheng [3] propose an extension of Olfati-Saber’s model
designed for noisy environments. In addition to the terms found
in Olfati-Saber’s model, their control law contains feedback terms
for position and velocity, to make agents tend to stay close to
the centroid of their neighborhood and minimizing the velocity
mismatch with their neighbors. For further details regarding the
related works please refer the full version of this paper on arxiv.org.

7 CONCLUSIONS
This paper presents an abstract declarative form of control for
flocking behavior and the results of a thorough comparison of
centralized and distributed versions of our MPC-based declarative
flocking with four other flocking models. Our simulation results
demonstrate that DF-MPC yields the best cohesion and least frag-
mentation, and produces natural flock shapes like those produced
by Reynolds’ rule-based model. Our resiliency analysis shows that
the distributed version of our DF-MPC is highly robust to sensor
noise.

As future work, we plan to study resilience of the flockingmodels
with respect to additional noisy scenarios such as actuation noise
(i.e., noise affecting acceleration) and faulty agents with deviant
behavior. We also plan to investigate smoothing techniques to
increase resilience to sensor noise.
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