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Abstract

We build on abduction-based explanations for ma-
chine learning and develop a method for comput-
ing local explanations for neural network models
in natural language processing (NLP). Our expla-
nations comprise a subset of the words of the in-
put text that satisfies two key features: optimal-
ity w.r.t. a user-defined cost function, such as the
length of explanation, and robustness, in that they
ensure prediction invariance for any bounded per-
turbation in the embedding space of the left-out
words. We present two solution algorithms, respec-
tively based on implicit hitting sets and maximum
universal subsets, introducing a number of algorith-
mic improvements to speed up convergence of hard
instances. We show how our method can be con-
figured with different perturbation sets in the em-
bedded space and used to detect bias in predictions
by enforcing include/exclude constraints on biased
terms, as well as to enhance existing heuristic-
based NLP explanation frameworks such as An-
chors. We evaluate our framework on three widely
used sentiment analysis tasks and texts of up to
100 words from SST, Twitter and IMDB datasets,
demonstrating the effectiveness of the derived ex-

planations'.

1 Introduction

The increasing prevalence of deep learning models in real-
world decision-making systems has made Al explainability
a central problem, as we seek to complement such highly-
accurate but opaque models with comprehensible explana-
tions as to why the model produced a particular predic-
tion [Samek and others, 2017; Ribeiro and others, 2016;
Zhang and others, 2019; Liu and others, 2018; Letham and
others, 2015]. Amongst existing techniques, local explana-
tions explain the individual prediction in terms of a subset of
the input features that justify the prediction. State-of-the-art
explainers such as LIME and Anchors [Ribeiro and others,
2016; Ribeiro and others, 2018] use heuristics to obtain short

*First Author, contact at emanuele.la.malfa@cs.ox.ac.uk

'Code available at https://github.com/EmanueleLM/OREs

explanations, which may generalise better beyond the given
input and are more easily interpretable to human experts, but
lack robustness to adversarial perturbations. The abduction-
based method of [Ignatiev and others, 2019al, on the other
hand, ensures minimality and robustness of the prediction by
requiring its invariance w.r.t. any perturbation of the left-out
features, meaning that the explanation is sufficient to imply
the prediction. However, since perturbations are potentially
unbounded, this notion of robustness may not be appropriate
for certain applications.

In this paper, we focus on natural language processing
(NLP) neural network models and, working in the embed-
ding space with words as features, introduce optimal robust
explanations (OREs). OREs are provably guaranteed to be
both robust, in the sense that the prediction is invariant for
any (reasonable) replacement of the features outside the ex-
planation, and minimal for a given user defined cost function,
such as the length of the explanation. Our core idea shares
similarities with abduction-based explanations (ABE) of [Ig-
natiev and others, 2019al], but is better suited to NLP models,
where the unbounded nature of ABE perturbations may re-
sult in trivial explanations equal to the entire input. We show
that OREs can be formulated as a particular kind of ABE or,
equivalently, minimal satisfying assignment (MSA). We de-
velop two methods to compute OREs by extending existing
algorithms for ABEs and MSAs [Ignatiev and others, 2019a;
Dillig and others, 2012]. In particular, we incorporate state-
of-the-art robustness verification methods [Katz and others,
2019; Wang and others, 2018] to solve entailment/robustness
queries and improve convergence by including sparse adver-
sarial attacks and search tree reductions. By adding suitable
constraints, we show that our approach allows one to detect
biased decisions [Darwiche and Hirth, 2020] and enhance
heuristic explainers with robustness guarantees [Ignatiev and
others, 2019d].

To the best of our knowledge, this is the first method to de-
rive local explanations for NLP models with provable robust-
ness and optimality guarantees. We empirically demonstrate
that our approach can provide useful explanations for non-
trivial fully-connected and convolutional networks on three
widely used sentiment analysis benchmarks (SST, Twitter
and IMDB). We compare OREs with the popular Anchors
method, showing that Anchors often lack prediction robust-
ness in our benchmarks, and demonstrate the usefulness of
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our framework on model debugging, bias evaluation, and re-
pair of non-formal explainers like Anchors.

2 Related Work

Interpretability of machine learning models is receiving in-
creasing attention [Chakraborty and others, 2017]. Exist-
ing methods broadly fall in two categories: explanations via
globally interpretable models (e.g. [Wang and Rudin, 2015;
Zhang and others, 2018]), and local explanations for a given
input and prediction (to which our work belongs). Two
prominent examples of the latter category are LIME [Ribeiro
and others, 2016], which learns a linear model around the
neighbourhood of an input using random local perturbations,
and Anchors [Ribeiro and others, 2018] (introduced in Sec-
tion 3). These methods, however, do not consider robustness,
making them fragile to adversarial attacks and thus insuffi-
cient to imply the prediction. Repair of non-formal explainers
has been studied in [Ignatiev and others, 2019d] but only for
boosted trees predictors. [Narodytska and others, 2019] as-
sesses the quality of Anchors’ explanations by encoding the
model and explanation as a propositional formula. The ex-
planation quality is then determined using model counting,
but for binarised neural networks only. Other works that fo-
cus on binarised neural networks, Boolean classifiers or sim-
ilar representations include [Shi and others, 2020; Darwiche
and Hirth, 2020; Darwiche, 2020]. Methods tailored to (lo-
cally) explaining NLP model decisions for a given input in-
clude [Li and others, 2015; Singh and others, 2018]. These
identify input features, or clusters of input features, that most
contribute to the prediction, using saliency and agglomera-
tive contextual decomposition respectively. Layer-wise rel-
evance propagation [Bach and others, 2015] is also popular
for NLP explanations, and is used in [Arras and others, 2016;
Arras and others, 2017; Ding and others, 2017]. Simi-
larly to the above, these methods do not consider robust-
ness. Robustness of neural network NLP models to adver-
sarial examples has been studied in [Huang and others, 2019;
Jia and others, 2019; La Malfa and others, 2020]. We note
that robustness verification is a different (and arguably sim-
pler) problem from deriving a robust explanation, as the latter
requires performing multiple robustness verification queries
(see Section 4). Existing neural network verification ap-
proaches include symbolic (SMT) [Katz and others, 2019],
relaxation [Ko and others, 2019; Wang and others, 2018], and
global optimisation [Ruan and others, 2018]. Research util-
ising hitting sets can be seen in [Ignatiev and others, 2019c¢],
which relates explanations and adversarial examples through
a generalised form of hitting set duality, and [Ignatiev and
others, 2019b], which works on improving model-based di-
agnoses by using an algorithm based on hitting sets to filter
out non-subset-minimal sets of diagnoses.

3 Optimal Robust Explanations for NLP

Preliminaries We consider a standard NLP classification
task where we classify some given input text ¢ into a plau-
sible class y from a finite set )). We assume that ¢ is a fixed
length sequence of words (i.e., features) I, t = (wy,...,w;),

where w; € W with W being a finite vocabulary (possi-
bly including padding). Text inputs are encoded using a
continuous word embedding £ : W — R4, where d is the
size of the embedding [Mikolov and others, 2013]. Thus,
given a text t = (wi,...,w;), we define the embedding
E(t) of t as the sequence T = (Ty,, - . -, Tu,) € R, where
Ty, = E(w;). We denote with W C W the vocabulary
used to train £. We consider embedding vectors trained
from scratch on the sentiment task, a technique that enforces
words that are positively correlated to each of the output
classes to be gathered closer in the embedding space [Baroni
and others, 2014], which is considered a good proxy for
semantic similarity with respect to the target task compared
to count-based embeddings [Alzantot and others, 2018]. For
classification we consider a neural network M : R:d — )
that operates on the text embedding.

Robust Explanations In this paper, we seek to provide lo-
cal explanations for the predictions of a neural network NLP
model. For a text embedding x = £(t) and a prediction
M (x), alocal explanation E is a subset of the features of ¢,
i.e.,, E C F where F = {w,...,w;}, thatis sufficient to im-
ply the prediction. We focus on deriving robust explanations,
i.e., on extracting a subset F of the text features F' which
ensure that the neural network prediction remains invariant
for any perturbation of the other features F' \ E. Thus, the
features in a robust explanation are sufficient to imply the pre-
diction that we aim to explain, a clearly desirable feature for
a local explanation. In particular, we focus on explanations
that are robust w.r.t. bounded perturbations in the embedding
space of the input text. We extract word-level explanations
by means of word embeddings: we note that OREs work,
without further extensions, with diverse representations (e.g.,
sentence-level, characters-level, etc.). For a word w € W,
with embedding z,, = £(w) we denote with B(w) C R? a
generic set of word-level perturbations. We consider the fol-
lowing kinds of perturbation sets, depicted also in Fig. 1.

e-ball: B(w) = {z € R? | ||z — 24|, < €}, for some € > 0
and p > 0. This is a standard measure of local robustness in
computer vision, where e-variations are interpreted as manip-
ulations of the pixel intensity of an image. It has also been
adopted in early NLP robustness works [Miyato and others,
2016], but then replaced with better representations based on
actual word replacements and their embeddings, see below.

E-NN box closure: B(w) = BB(E(NNg(w))), where
BB(X) is the minimum bounding box for set X; for a set
W CW,EW') = Uyew 1€W)}; and NN (w) is the
set of the k closest words to w in the embedding space, i.e.,
words w’ with smallest d(x,,, £(w")), where d is a valid no-
tion of distance between embedded vectors, such as p-norms
or cosine similarity>. This provides an over-approximation
of the k-NN convex closure, for which constraint propaga-
tion (and thus robustness checking) is more efficient [Jia and
others, 2019; Huang and others, 2019].

For some word-level perturbation B, set of features £ C
F, and input text ¢ with embedding (x1, ..., x;), we denote

Zeven though the box closure can be calculated for any set of
embedded words.
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Figure 1: A graphical representation of the perturbation sets we de-
fine in the embedding space.

with Bg(t) the set of zext-level perturbations obtained from
t by keeping constant the features in £ and perturbing the
others according to B:

Be(t) ={(z},...,z) e R" | 2! =, ifw € E;

z,, € B(w) otherwise}. (1)

A robust explanation ' C F' ensures prediction invariance
for any point in Bg(t), i.e., any perturbation (within 1) of the
features in F'\ E.

Def. 1 (Robust Explanation). For a text t = (wq, ..., w;)
with embedding © = E(t), word-level perturbation B, and
classifier M, a subset EE C F of the features of t is a robust
explanation iff

Vo' € Be(t). M(2') = M (x). )
We denote (2) with predicate Robyy . (E).

Optimal Robust Explanations (OREs) While robustness is
a desirable property, it is not enough alone to produce use-
ful explanations. Indeed, we can see that an explanation F
including all the features, i.e., E = F/, trivially satisfies Def-
inition 1. Typically, one seeks short explanations, because
these can generalise to several instances beyond the input x
and are easier for human decision makers to interpret. We
thus introduce optimal robust explanations (OREs), that is,
explanations that are both robust and optimal w.r.t. an arbi-
trary cost function that assign a penalty to each word.

Def. 2 (Optimal Robust Explanation). Given a cost function
C:W — RY, and fort = (wy,...,w,), x, B, and M as in
Def. 1, a subset E* C F of the features of t is an ORE iff

E* € argmin Y C(w) s.t. Robys o (E). 3)
BCF wek

Note that (3) is always feasible, because its feasible set
always includes at least the trivial explanation £ = F. A
special case of our OREs is when C is uniform (it assigns the
same cost to all words in ¢), in which case E* is (one of)
the robust explanations of smallest size, i.e., with the least
number of words.

Relation with Abductive Explanations Our OREs have sim-
ilarities with the abduction-based explanations (ABEs) of [1g-
natiev and others, 2019a] in that they also derive minimal-cost

explanations with robustness guarantees. For an input text
t = (wy,...,w), let C = /\f::1 Xi = Xy, be the cube rep-
resenting the embedding of ¢, where ; is a variable denoting
the i-th feature of x. Let AV represent the logical encoding of
the classifier M, and ¢ be the formula representing the output
of N given x1, ..., X1

Def. 3 ([Ignatiev and others, 2019al). An abduction-based
explanation (ABE) is a minimal cost subset C* of C such
that C* AN = 4.

Note that the above entailment is equivalently expressed as
C*E N = §). Let B = /\2=1 Xi € B(w;) be the con-
straints encoding our perturbation space. Then, the follow-
ing proposition shows that OREs can be defined in a similar
abductive fashion and also in terms of minimum satisfying
assignments (MSAs) [Dillig and others, 2012]. In this way,
we can derive OREs via analogous algorithms to those used
for ABEs [2019a] and MSAs [Dillig and others, 2012], as
explained in Section 4. Moreover, we find that every ORE
can be formulated as a prime implicant [Ignatiev and others,
2019al, a property that connects our OREs with the notion of
sufficient reason introduced in [Darwiche and Hirth, 2020].

Prop. 1. Let E* be an ORE and C™ its constraint encoding.
Define ¢ = (B AN) — §. Then, all the following definitions
apply to C*:

1. C* is a minimal cost subset of C such that C* = ¢.

2. C* is a minimum satisfying assignment for ¢.

3. C* is a prime implicant of ¢.

Proof. See supplement O

The key difference with ABEs is that our OREs are robust
to bounded perturbations of the excluded features, while
ABESs must be robust to any possible perturbation. This is an
important difference because it is hard (often impossible) to
guarantee prediction invariance w.r.t. the entire input space
when this space is continuous and high-dimensional, like in
our NLP embeddings. In other words, if for our NLP tasks
we allowed any word-level perturbation as in ABEs, in most
cases the resulting OREs will be of the trivial kind, £* = F'
(or C* = (), and thus of little use. For example, if we
consider e-ball perturbations and the review “the gorgeously
elaborate continuation of the lord of the rings”, the resulting
smallest-size explanation is of the trivial kind (it contains the
whole review) already at € = 0.1.

Exclude and include constraints We further consider OREs
E* derived under constraints that enforce specific features F”’
to be included/excluded from the explanation:

E* € argmin Y C(w) s.t. Robyro(E) A¢(E),  (4)
ECF wek

where ¢(F) is one of F' N E = () (exclude) and F’' C E (in-
clude). Note that adding include constraints doesn’t affect the
feasibility of our problem?. Conversely, exclude constraints

3because the feasible region of (4) always contains at least the
explanation E* U F’, where E* is a solution of (3) and F" are the
features to include. See Def. 1.



might make the problem infeasible when the features in F”’
don’t admit perturbations, i.e., they are necessary for the pre-
diction, and thus cannot be excluded. Such constraints can
be easily accommodated by any solution algorithm for non-
constrained OREs: for include ones, it is sufficient to restrict
the feasible set of explanations to the supersets of F’; for ex-
clude constraints, we can manipulate the cost function so as to
make any explanation with features in F” strictly sub-optimal
w.r.t. explanations without*.

Constrained OREs enable two crucial use cases: detect-
ing biased decisions, and enhancing non-formal explainabil-
ity frameworks.

Detecting bias Following [Darwiche and Hirth, 2020], we
deem a classifier decision biased if it depends on protected
features, i.e., a set of input words that should not affect
the decision (e.g., a movie review affected by the director’s
name). In particular, a decision M (x) is biased if we can
find, within a given set of text-level perturbations, an input z’
that agrees with = on all but protected features and such that
M(x) # M(x").

Def. 4. For classifier M, text t with features I, protected fea-
tures F' and embedding x = £(t), decision M (x) is biased
w.r.t. some word-level perturbation B, if

' € BF\F’ (t)M(I) 7é M(Z‘/)

The proposition below allows us to use exclude constraints
to detect bias.

Prop. 2. For M, t, F, F’, x and B as per Def. 4, decision
M (x) is biased iff (4) is infeasible under F' N E = ().

Proof. See supplement O

Enhancing non-formal explainers The local explanations
produced by heuristic approaches like LIME or Anchors do
not enjoy the same robustness/invariance guarantees of our
OREs. We can use our approach to minimally extend (w.r.t.
the chosen cost function) any non-robust local explanation
F’ in order to make it robust, by solving (4) under the in-
clude constraint F' C E. In particular, with a uniform C, our
approach would identify the smallest set of extra words that
make F’ robust. Being minimal/smallest, such an extension
retains to a large extent the original explainability properties.

Relation with Anchors Anchors [Ribeiro and others,
2018] are a state-of-the-art method for ML explanations.
Given a perturbation distribution D, classifier M and input
x, an anchor A is a predicate over the input features such that
A(x) holds and A has high precision and coverage, defined
next.

rec(A) = Pr
prec(4) D(I’IA(I’))( D(x')
)
In other words, prec(A) is the probability that the predic-
tion is invariant for any perturbation 2’ to which explana-

tion A applies. In this sense, precision can be intended as

*That is, we use cost C’ such that Ve m\ /C’' (w) = C(w) and
VorerC'(w') > > wer\r C(w). The ORE obtained under cost

C’ might still include features from F”, which implies that (4) is
infeasible (i.e., no robust explanation without elements of F” exists).

a robustness probability. cov(A) is the probability that ex-
planation A applies to a perturbation. To discuss the relation
between Anchors and OREs, for an input text ¢, consider an
arbitrary distribution D with support in By(t) (the set of all
possible text-level perturbations), see (1); and consider an-
chors A defined as subsets E of the input features F, i.e.,
Ag(z) = Apeg®w = E(w). Then, our OREs enjoy the
following properties.

Prop. 3. If E is a robust explanation, then prec(Ag) = 1.
Proof. See supplement O

Note that when D is continuous, cov(Ag) is always zero
unless E = (3. We thus illustrate the next property assuming
that D is discrete (when D is continuous, the following still
applies to any empirical approximation of D).

Prop. 4. If E C E’, then cov(Ag) > cov(Ag/).
Proof. See supplement O

The above proposition suggests that using a uniform C, i.e.,
minimizing the explanation’s length, is a sensible strategy to
obtain high-coverage OREs.

4 Solution Algorithms

We present two solution algorithms to derive OREs, respec-
tively based on the hitting-set (HS) paradigm of [Ignatiev
and others, 2019a] and the MSA algorithm of [Dillig and
others, 2012]. Albeit different, both algorithms rely on
repeated entailment/robustness checks B A E AN | §
for a candidate explanation £ C C. For this check, we
employ two state-of-the-art neural network verification tools,
Marabou [Katz and others, 2019] and Neurify [Wang and
others, 2018]: they both give provably correct answers and,
when the entailment is not satisfied, produce a counter-
example ' € Bg(t), i.e., a perturbation that agrees with
E and such that B A C' AN [~ 4, where C’ is the cube
representing x’. We now briefly outline the two algorithms.
A more detailed discussion (including the pseudo-code) is
available in the supplement.

Minimum Hitting Set For a counterexample C’, let I’ be
the set of feature variables where C’ does not agree with C
(the cube representing the input). Then, every explanation F/
that satisfies the entailment must hit all such sets I’ built for
any counter-examples C’ [Ignatiev and others, 2016]. Thus,
the HS paradigm iteratively checks candidates F built by se-
lecting the subset of C' whose variables form a minimum HS

M(z) = M(2')); cov(A) = Pr (A(z')) (w.r.t. cost C) of said I's. However, we found that this method

often struggles to converge for our NLP models, especially
with large perturbations spaces (i.e., large € or k). We solved
this problem by extending the HS approach with a sub-routine
that generates batches of sparse adversarial attacks for the in-
put C. This has a two-fold benefit: 1) we reduce the number
of entailment queries required to produce counter-examples,

3in which case cov(Ap) = 1 (as Ag = true). Indeed, for E # 0),
the set {z’ | Ag(z')} has |E| fewer degrees of freedom than the
support of D, and thus has both measure and coverage equal to zero.



and 2) sparsity results in small I’ sets, which further improves
convergence.

Minimum Satisfying Assignment This algorithm exploits
the duality between MSAs and maximum universal subsets
(MUSs): for cost C and formula ¢ = (B AN) — 4, an
MUS X is a set of variables with maximum C such that V.X.¢,
which implies that C'\ X is an MSA for ¢ [Dillig and others,
2012] and, in turn, an ORE. Thus, the algorithm of [Dillig and
others, 2012] focuses on deriving an MUS, and it does so in a
recursive branch-and-bound manner, where each branch adds
a feature to the candidate MUS. Such an algorithm is expo-
nential in the worst-case, but we mitigated this by selecting a
good ordering for feature exploration and performing entail-
ment checks to rule out features that cannot be in the MUS
(thus reducing the search tree).

5 Experimental Results

Settings We have trained fully connected (FC) and con-
volutional neural networks (CNN) models on sentiment
analysis datasets that differ in the input length and difficulty
of the learning task®. We considered 3 well-established
benchmarks for sentiment analysis, namely SST [Socher
and others, 2013], Twitter [Go and others, 2009] and
IMDB [Maas and others, 2011] datasets. From these, we
have chosen 40 representative input texts, balancing positive
and negative examples. Embeddings are pre-trained on the
same datasets used for classification [Chollet and others,
2015]. Both the HS and MSA algorithms have been imple-
mented in Python and use Marabou [Katz and others, 2019]
and Neurify [Wang and others, 2018] to answer robustness
queries’. In the experiments below, we opted for the KNN-
box perturbation space, as we found that the k£ parameter was
easier to interpret and tune than the € parameter for the e-ball
space, and improved verification time. Further details on the
experimental settings, including a selection of e-ball results,
are given in the supplement.

Effect of classifier’s accuracy and robustness. We find that
our approach generally results in meaningful and compact
explanations for NLP. In Figure 2, we show a few OREs
extracted for negative and positive texts, where the returned
OREs are both concise and semantically consistent with
the predicted sentiment. However, the quality of our OREs
depends on that of the underlying classifier. Indeed, en-
hanced models with better accuracy and/or trained on longer
inputs tend to produce higher quality OREs. We show this
in Figures 3 and 4, where we observe that enhanced models
tend to result in more semantically consistent explanations.
For lower-quality models, some OREs include seemingly

SExperiments were parallelized on a server with two 24-core In-
tel Xenon 6252 processors and 256GB of RAM, but each instance
is single-threaded and can be executed on a low-end laptop.

"Marabou is fast at verifying ReLU FC networks, but it becomes
memory intensive with CNNs. On the other hand, the symbolic in-
terval analysis of Neurify is more efficient for CNNs. A downside
of Neurity is that it is less flexible in the constraint definition (inputs
have to be represented as squared bi-dimensional grids, thus posing
problems for NLP inputs which are usually specified as 3-d tensors).

irrelevant terms (e.g., “film”, “and”), thus exhibiting short-
comings of the classifier.

Detecting biases As per Prop. 2, we applied exclude con-
straints to detect biased decisions. In Figure 5, we provide a
few example instances exhibiting such a bias, i.e., where any
robust explanation contains at least one protected feature.
These OREs include proper names that shouldn’t constitute
a sufficient reason for the model’s classification. When we
try to exclude proper names, no robust explanation exists,
indicating that a decision bias exists.

Debugging prediction errors An important use-case for
OREs is when a model commits a misclassification. Mis-
classifications in sentiment analysis tasks usually depend
on over-sensitivity of the model to polarized terms. In this
sense, knowing a minimal, sufficient reason behind the
model’s prediction can be useful to debug it. As shown in
the first example in Figure 6, the model cannot recognize the
double negation constituted by the terms not and dreadful as
a syntax construct, hence it exploits the negation term not to
classify the review as negative.

Comparison to Anchors We evaluate the robustness of An-
chors for FC and CNN models on the SST and Twitter
datasets®. To compute robustness, we assume a kNN-box per-
turbation space B with k¥ = 15 for FC and k = 25 for CNN
models. To extract Anchors, we set D to the standard per-
turbation distribution of [Ribeiro and others, 20181, defined
by a set of context-wise perturbations generated by a power-
ful language model. Thus defined Bs are small compared to
the support of D, and so one would expect high-precision An-
chors to be relatively robust w.r.t. said Bs. On the contrary, the
Anchors extracted for the FC models attain an average preci-
sion of 0.996 on SST and 0.975 on Twitter, but only 12.5% of
them are robust for the SST case and 7.5% for Twitter. With
CNN models, high-quality Anchors are even more brittle: 0%
of Anchors are robust on SST reviews and 5.4% on Twitter,
despite an average precision of 0.995 and 0.971, respectively.

We remark, however, that Anchors are not designed to pro-
vide such robustness guarantees. Our approach becomes use-
ful in this context, because it can minimally extend any local
explanation to make it robust, by using include constraints as
explained in Section 3. In Figure 7 we show a few examples
of how, starting from non-robust Anchors explanations, our
algorithm can find the minimum number of words to make
them provably robust.

6 Conclusions

We have introduced optimal robust explanations (OREs) and
applied them to enhance interpretability of NLP models.
OREs provide concise and sufficient reasons for a partic-
ular prediction, as they are guaranteed to be both minimal
w.r.t. a given cost function and robust, in that the prediction
is invariant for any bounded replacement of the left-out fea-
tures. We have presented two solution algorithms that build

8 Accuracies are 0.89 for FC+SST, 0.82 for FC+Twitter, 0.89 for
CNN+SST, and 0.77 for CNN+Twitter.



'# this movie is really stupid and very[boringl most of the time there are
almost no ghoulies in it at all there is nothing good about this movie on
any level just more bad actors pathetically attempting to make a movie
so they can get enough money to eat avoid at all costs.' (IMDB)

'# well I am the target market l[loved}t furthermore my husband also a
boomer with strong memories of the 60s liked it a lot too i haven't read
the book so i went into it neutral i was very pleasantly surprised its now
on ourlhighly recommendedlvideo list br br.' (IMDB)

‘The main story ..[islcompelling enough but it is difficult to[Ehrug off the
annoyance of that chatty fish.' (SST)

'Still this flick is[fun_and host to some truly[excellentkequences.' (SST)

'i couldn't bear to watch it and I thought the UA[loss Was embarrassing
... (Twitter)

'Is[delighted]by the beautiful weather.' (Twitter)

Figure 2: OREs for IMDB, SST and Twitter datasets (all the texts are correctly classified). Models employed are FC with 50 input words
each with accuracies respectively 0.89, 0.77 and 0.75. OREs are highlighted in blue. Technique used is kNN boxes with k=15.

‘Bfar/produced{SaimalHayek and director|[ulie] Taymor have|[infused] Frida
with a visual style[uniquel and inherent to the mcharacter paintings
and in the process created a masterful work of art of their own.' (SST)

"Thel[filml just nightl turn on many people[fo operalin general, an art form
at[once visceralland spiritual fxonderfally vulgarland|sublimely lofty

and as emotionally grand as life.' (SST)

'Nahllfhaven'tlreceived my stimulus yet.' (Twitter)

1 ORE, FC
[ ORE, CNN

[__1 ORE, FC n CNN

Figure 3: Comparison of OREs for SST and Twitter texts on FC
(red) vs CNN (blue) models (common words in magenta). The first
two are positive reviews, the third is negative (all correctly classi-
fied). Accuracies of FC and CNN models are, respectively, 0.88 and
0.89 on SST, 0.77 on Twitter. Models have input length of 25 words,
ORE:s are extracted with kNN boxes (k=25).

'# what a[wastelof talent a very[poor]semi coherent[scriptcripples this
film rather unimaginative direction too some very faint echoes of Fargo
here but it just doesnt come off.' (IMDB)

'#la few words for the people here in cine club the|worst crap ever
seen on this honorable cinema a very poor script a very[badlactors
and a very bad movie [...]' (IMDB)

' lcouldnbear to watchlitland I thought the UA[losslwas embarrassing
.. (Twitter)

[C]ORE, FC 25 Inp. Words [ JORE, FC 100 Inp. Words [_|ORE, FC 25 n FC 50 n FC 100

[JoRE, FC 50 Inp. Words [[JORE, FC 25 n FC 50

Figure 4: Comparison of OREs on negative IMDB and Twitter in-
puts for FC models. The first and third examples are trained with 25
(red) VS 50 (blue) input words (words in common to both OREs are
in magenta). The second example further uses an FC model trained
with 100 input words (words in common to all three OREs are in
orange). Accuracy is respectively 0.7 and 0.77 and 0.81 for IMDB,
and 0.77 for both Twitter models. All the examples are classified
correctly. OREs are extracted with kNN boxes (k=25).

Austin[Powers]injGoldmemberlhas the right]stuff{for silly|I...]

(SST, FC 10 Input Words, k-NN (k=27))

Btar/producer]saima Haye aymor have infused|[Frida]l...]
(SST, FC 10 Input Words, k-NN (k=375))

[ ore

[] words to exclude

Figure 5: Two examples of decision bias from an FC model with an
accuracy of 0.80.

'This one is[nothearly as dreadful as expected.' (SST, predicted as
negative)

'Morning!! Beautifullisn'tlit! What you got planned|for]today?' (Twitter,
predicted as negative)

[] ore

[] ORE's polarized words

Figure 6: Two examples of over-sensitivity to polarized terms (in
red). Other words in the OREs are highlighted in green. Models
used are FC with 25 input words (accuracy 0.82 and 0.74). Method
used is kNN with k respectively equal to 8 and 10.

‘The film just[might]turn on many people[fo_operalin general,
an art form atloncelvisceralland spiritual
and sublimely lofty." (SST)

|Therelare far worsel messages to teach a young audience

which will probably[belperfectly[happy] with the [SToppy]
Elapsticklcomedy.* (SST)

{Thislone[is notlnearly as dreadful as expected.” (SST)

[___1 Anchors [ Minimal Robust Extension

Figure 7: Examples of Anchors explanations (in blue) along with the
minimal extension required to make them robust (in red). Examples
are classified (without errors) with a 25-input-word CNN (accuracy
0.89). ORE:s are extracted for KNN boxes and k=25.



on the relation between our OREs, abduction-based explana-
tions and minimum satisfying assignments. We have demon-
strated the usefulness of our approach on widely-adopted sen-
timent analysis tasks, providing explanations for neural net-
work models beyond reach for existing formal explainers.
Detecting biased decisions, debugging misclassifications, and
repairing non-robust explanations are some of key use cases
that our OREs enable. Future research plans include explor-
ing more general classes of perturbations beyond the embed-
ding space.
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7 Appendix

We structure the Appendix in the following way. We first pro-
vide proofs of the propositions in Section 3. Second, we give
details (through the pseudo-code) of the Algorithms and sub-
routines that were used to find Optimal Robust Explanations:
in particular we describe the shrink (used to improve MSA)
and the Adversarial Attacks procedures (used to improve HS).
We then provide details on the datasets and the architectures
that we have used in the Experimental Evaluation, and finally
we report many examples of interesting OREs that we were
able to extract with our methods, alongside with tables that
complete the comparison between MSA and HS as described
in the Experimental Evaluation Section.

7.1 Proofs

Proof of Prop. 2 Call A = “M (z) is biased” and B =
“(4) is infeasible under F' N E = ()”. Let us prove first that
B — A. Note that B can be equivalently expressed as

VEC F.(ENF 40V 3z € By(t).M(x) # M(z'))

If the above holds for all E then it holds also for E = F'\
F', and so it must be that 32’ € Bp\ g (). M () # M(2)
because the first disjunct is clearly false for E = F'\ F".

We now prove A — B by showing that -B — —A. Note
that =B can be expressed as

JE C F(ENF =0AYa € By(t).M(z) = M(a')), (6)

and —A can be expressed as
V' € Bpypi (t).M(z) = M(a'). @)

To see that (6) implies (7), note that any FE that satisfies (6)
must be such that ENF’ = (), which implies that £ C F'\ F’,
which in turn implies that Bp\ p(t) € Bg(t). By (6), the
prediction is invariant for any 2’ in Bg(t), and so is for any
7' in BF\F’ (t)

Proof of Prop. 3 A robust explanation £ C F' guarantees
prediction invariance for any ' € Bg(t), i.e., for any 2’ (in
the support of D) to which anchor Ag applies.

Proof of Prop. 4 For discrete D with pmf fp, we can ex-
press cov(Ag) as

cov(dp) = > fp@) 1age) =
z’ €supp(D)
Z fo(z H 1o —g(w)
z' €supp(D) weE

To see that, for E' O F, cov(Ag/) < cov(Ag), observe that
cov(Ag) can be expressed as

cov(Ap) = Z Io(x H 1o —g(w) =
' €supp(D) wek!
Z fD H 1, =E(w) ° H ]-a:,’w:é'(w)
z’ Esupp(D) wek weE\E'

and that for any 2/, HweE\E, 1y —gw) < 1.

Proof of Prop. 1 With abuse of notation, in the following
we use C* to denote both an ORE and its logical encoding.

1. if C* is an ORE, then ¢ = (B AN') — § is true for any
assignment z’ of the features not in C*. In particular,
¢ is trivially satisfied for any =’ outside the perturba-
tion space B, and, by Definition 1, is satisfied for any z’
within the perturbation space.

2. As also explained in [Dillig and others, 2012], finding
an optimal C* such that C* |= ¢ is equivalent to finding
an MSA C™* for ¢. We should note that C* is a special
case of an MSA, because the possible assignments for
the variables in C* are restricted to the subsets of the
cube C.

3. C* is said a prime implicant of ¢ if C* |= ¢ and there
are no proper subsets C' C C* such that C’ |= ¢. This
holds regardless of the choice of the cost C, as long as
it is additive and assigns a positive cost to each feature
as per Definition 2. Indeed, for such a cost function, any
proper subset ¢/ C C* would have cost strictly below
that of C*, meaning that C’ }~ ¢ (i.e., is not robust)
because otherwise, C’ (and not C*) would have been
(one of) the robust explanations with minimal cost.

7.2 Optimal Cost Algorithms and Sub-Routines

In this Section we provide a full description and the pseudo-
code of the algorithms that for reason of space we were not
able to insert in the main paper. We report a line-by-line de-
scription of the HS procedure (Algorithm 1): we further de-
scribe how the adversarial attacks procedure is used to gen-
erate candidates that help the HS approach converge on hard
instances, as reported in Section 4. We then describe the al-
gorithm to compute Smallest Cost Explanations (Algorithm
4). In Algorithm 5, we finally detail the shrink procedure as
sketched in Section 3.

Minimal Hitting-Sets and Explanations One way to com-
pute optimal explanations against a cost function C, is
through the hitting set paradigm [Ignatiev and others, 2019al,
that exploits the relationship between diagnoses and con-
flicts [Reiter, 1987]: the idea is to collect perturbations and
to calculate on their indices a minimum hitting set (MHS)
i.e., a minimum-cost explanation whose features are in com-
mon with all the others. We extend this framework to find a
word-level explanation for non-trivial NLP models. At each
iteration of Algorithm 1, a minimum hitting set F is extracted
(line 3) from the (initially empty, line 1) set I". If function
Entails evaluates to False (i.e., the neural network N is prov-
ably safe against perturbations on the set of features identified
by F'\ F) the procedure terminates and F is returned as an
ORE. Otherwise, (at least) one feasible attack is computed on
F\ E and added to T" (lines 7-8): the routine then re-starts.
Differently from [Ignatiev and others, 2019al, as we have ex-
perienced that many OREs whose a large perturbation space
- i.e. when € or k are large - do not terminate in a reason-
able amount of time, we have extended the vanilla hitting set
approach by introducing SparseAttacks function (line 7). At
each iteration SparseAttacks introduces in the hitting set I" a
large number of sparse adversarial attacks on the set of fea-
tures F'\ E: itis in fact known [Ignatiev and others, 2016] that



attacks that use as few features as possible help convergence
on instances that are hard (intuitively, a small set is harder to
“hit” hence contributes substantially to the optimal solution
compared to a longer one) SparseAttacks procedure is based
on random search and it is inspired by recent works in image
recognition and malaware detection [Croce and others, 2020]:
pseudo-code is reported in 2, while a detailed description fol-
lows in the next paragraph.

Sparse Adversarial Attacks In Algorithm 2 we
present a method to generate sparse adversarial attacks
against features (i.e., words) of a generic input text.
GeneratePerturbations(k,n, Q) (line 2) returns a random
population of n perturbations that succeed at changing A’s
classification: for each successful attack p, a subset of k out
of d features has been perturbed through a Fast Gradient
Sign attack ° (FGSM), while it is ensured that the point lies
inside a convex region ) which in our case will be the €
hyper-cube around the embedded text. If no perturbation is
found in this way (i.e., population size of the atacks is zero,
as in line 3), budget is decreased (line 4) and another trial of
GeneratePerturbations(k,n, Q) is performed (e.g., with
few features as targets and a different random seed to guide
the attacks). Function AccuracyDrop(N, P) returns the
best perturbation a where k is increasingly minimised (line
7). Algorithm terminates when either no attacks are possible
(all the combinations of features have been explored) or after
fixed number of iterations has been performed (line 1).

Algorithm 1: ORE computation via implicit hitting
sets and sparse attacks

Data: a network N, the input text ¢, the initial set of
features F, a network prediction 3 , a cost
function C against which the explanation is
minimised

Result: an optimal ORE E

1 '=40
2 while true do
3 E = MinimumHS(T,C)

o | if Entails(E, (N A Bp\g(t)) — 7) then
5 | return £

6 else

7 A = SparseAttacks(E,N')

8 L r=ru{Aa}

Minimum Satisfying Assignment Explanations This ap-
proach, based on the method presented in [Dillig and others,
2012], finds an explanation in the form of an MSA, for which
in turn a maximum universal subset (MUS) is required. For a
given cost function C and text ¢, an MUS is a universal subset
t’ of words that maximises C(¢'). An MSA of the network M
w.r.t the text is precisely a satisfying assignment of the for-
mula Ve .M — ¢ for some MUS #'. In other words, an
MSA is ¢\ ¢'. The inputs to the MSA algorithm are: N which

“https://www.tensorflow.org/tutorials/generative/adversarial _
fgsm

Algorithm 2: Computing a perturbation that is suc-
cessful and minimises the number of features that are
perturbed.

Data: N - neural network model, F' - input text from
feature space; k € NT{O} - number of

perturbations initially tested; (Q C F’ - (sub)set
of features where perturbations are found;
n e NT{O} - number of elements generated at
each iteration of the algorithm; budget - number
of iterations allowed before stopping.
1 while k£ > 0 A budget > 0 do
2 P + GeneratePerturbations(k,n, Q)
3 if length(P) == 0 then
4 budget < budget — 1
5 continue
6 end
7 a + arg max,e p AccuracyDrop(M, P)
8 k < k — 1, budget < budget — 1

9 end
10 return a

represents the network M in constraint form; text ¢; cost func-
tion C and prediction g for the input ¢. The algorithm first uses
the reversed sort function for the text ¢ to optimize the search
tree. The text is sorted by the cost of each word. then uses
the recursive MUS algorithm to compute an MUS ¢'. Finally,
the optimal explanation (¢ \ ¢') is returned.

The inputs of the mus algorithm are: a set of candidate
words cWW that an MUS should be calculated for (equal to ¢
in the first recursive call), a set of bounded words bW that
may be part of an MUS, where V,cp17, w may be limited by
e-ball or k-NN box clousure, a lower bound L, the network
N, a cost function C, and a network prediction 4. It returns a
maximum-cost universal set for the network N with respect
to ¢, which is a subset of cWW with a cost greater than L, or
the empty set when no such subset exists. The lower bound
allows us to cut off the search when the current best result
cannot be improved. During each recursive call, if the lower
bound cannot be improved, the empty set is returned (line
1). Otherwise, a word w is chosen from the set of candidate
words cWW and it is determined whether the cost of the uni-
versal subset containing word w is higher than the cost of the
universal subset without it (lines 5-12). Before definitively
adding word w to bW, we test whether the result is still sat-
isfiable with Entails (line 5) i.e. still an explanation. The
shrink method helps to reduce the set of candidate words
by iterating through current candidates and checking using
Entails whether they are necessary. This speeds-up the al-
gorithm (as there are fewer overall calls to Entails). The
recursive call at line 6 computes the maximum universal sub-
set of V,cow N — ¢, with adjusted ¢V and L as necessary.
Finally within this 7 f block, we compute the cost of the uni-
versal subset involving word w, and if it is higher than the
previous bound L, we set the new lower bound to cost (lines
7-11). Lines 11-12 considers the cost of the universal subset
not containing word w, in case it has higher cost, and if so,


https://www.tensorflow.org/tutorials/generative/adversarial_fgsm
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Algorithm 3: MUS computation,
mus(bW,N,cW,t,C, L, )

Data: a list of bounded words bW, a network AV, a set
of candidate words cW, the input text ¢, a cost
function C against which the ORE is
minimised, a lower bound for MUS L, a
prediction  for the input

Result: a Maximum Universal Subset with respect to

input text ¢
1if ¢cW =0 orC(cW) < L then return ()
2 best = ()
3 choose w € cW
4 W = bW U {w}, constW = W \ {w}
s if Entails(constW, (N A Bp g(constW)) — 4)
then
6 Y = mus(bW, N, shrink(N, bW, cW \
{’LU}), t? Ca L— C(UJ), yA>
cost =C(Y') + C(w)
if cost > L then
best =Y U{w}
L L = cost

e % 3

u Y = mus(bW \ {w}, N, W \ {w},t,C, L, )
12 if C(Y) > L then best = Y
13 return best

updates best. Once one optimal explanation has been found,
it is possible to compute all combinations of the input that
match that cost, and then use Entails on each to keep only
those that are also explanations.

Comparing MHS and MSA The MSA-based approach uses
MUS algorithm to find maximum universal subset and then
finds a MSA for that MUS. MUS is a recursive branch-and-
bound algorithm [Dillig and others, 2012] that explores a bi-
nary tree structure. The tree consists of all the word appear-
ing in the input cube. The MUS algorithm possibly explores
an exponential number of universal subsets, however, the re-
cursion can be cut by using right words ordering (i.e. words
for which robustness query will answer false, consider words
with the highest cost first) or with shrink method. MUS starts
to work with a full set of candidate words, whereas the HS
approach starts with an empty set of fixed words and tries to
find an attack for a full set of bounded words. In each iter-
ation step, the HS approach increases the set of fixed words
and tries to find an attack. It is because a subset ¢’ C t is an
MSA for a classifier M with respect to input text ¢ iff ¢’ is a
minimal hitting set of minimum falsifying set (see [Ignatiev
and others, 2016] for details). To speed up the MSA algo-
rithm, we use shrink procedure which reduces the set of can-
didate words, and for non-uniform cost function, words or-
dering (words with the highest cost are considered as the first
candidates), while HS-based approach uses SparseAttacks
routine to increase the hitting set faster.

Excluding words from MSA To exclude specific words from
a smallest explanation we add one extra argument to the MSA
algorithm input: the bW which represents bounded words. In
this case the set cW = ¢\ bW. From now on the procedure

Algorithm 4: Computing smallest cost explanation

Data: a network AV, an input text ¢, a cost function C
for the input C, a prediction g,
Result: A smallest cost explanation for network A
w.r.t. input text ¢
bW =0,cW =C,sce =10
2 textSorted ByCost = sort(t)
marus =
mus(bW, N, cW, textSorted ByCost,C,0,9)

foreach c € t do

if ¢ ¢ maxus then

| sce=sceUc

end
end
return sce

—

w

e 9 o e

Algorithm 5: shrink algorithm
shrink(bW,N,cW,C,C, L, )
Data: a list of bounded words bW, a network N, a set
of candidate words cW, a text ¢, a cost function
C, alower bound L, a prediction g for the input
Result: A set of the essential candidate words eW
1 eW =cW
2 foreach word € cW do

3 eW = eW \ {word}

4 bW = bW U {word}

5 constW = C'\ bw

s | if Entails(constW, (N ABp\g(cW)) — ) then
7 | eW =eW U {word}

8 end

9 bW = bW \ {word}

10 end

n return el

is the standard one.

7.3 Details on the Experimental Results

Datasets and Test Bed

As mentioned in the Experimental Evaluation Section, we
have tested MSA and HS approaches for finding optimal
cost explanations respectively on the SST, Twitter and IMDB
datasets. For each task, we have selected a sample of 40 input
texts that maintain classes balanced (i.e., half of the examples
are negative, half are positive). Moreover, we inserted inputs
whose polarity was exacerbated (either very negative or very
positive) as well as more challenging examples that machines
usually misclassifies, like double negations or mixed senti-
ments etc. Further details in Table 1.

Models Setup

We performed our experiments on FC and CNNs with up to
6 layers and 20K parameters. FC are constituted by a stack
of Dense layers, while CNNs additionally employ Convolu-
tional and MaxPool layers: for both CNNs and FC the de-
cision is taken through a softmax layer, with Dropout that
is addedd after each layer to improve generalization during



'# I've seen Foxy Brown, Coffy Friday Foster Bucktown, and Black Mama White
Mama of these this is Pam Griers worst movie poor acting bad script boring
action scenes theres just nothing there [avoidlthis and rent Friday Foster
Coffy or Foxy Brown instead' (IMDB, predicted as negative)

! gave this a 2 and it only avoided a[I]because of the occasional unintentional
laugh the film is excruciatingly. Boring and incredibly cheapl[itsleven worse if you
know anything at all about the Fantastic Four.', (IMDB, predicted as negative)

{#]a few words for the people here in cine club the [worst]crap ever seen on this
honorable cinema a very poor script a veryactors and a very bad movie
dont waste your time looking this movie see the very good or any movie have
been good commented by me say no more' (IMDB, predicted as negative)

Figure 8: Examples of Optimal Robust Explanations - highlighted
in blue -. OREs were extracted using kNN boxes with 25 neigh-
bors per-word: fixing words in an ORE guarantees the model to be
locally robust. The examples come from the IMDB dataset, model
employed is a FC network with 100 input words (accuracy 0.81).

the training phase. As regards the embeddings that the mod-
els equip, we experienced that the best trade-off between the
accuracy of the network and the formal guarantees that we
need to provide is reached with low-dimensional embeddings,
thus we employed optimized vectors of dimension 5 for each
word in the embedding space: this is in line with the exper-
imental evaluations conducted in [Patel and Bhattacharyya,
2017], where for low-order tasks such as sentiment analy-
sis, compact embedding vectors allow to obtain good perfor-
mances, as shown in Table 1. We note that techniques such
as retro-fitting [Faruqui and others, 2014] could allow using
more complex representations and might help with high-order
tasks such as multi-class classification, where the quality of
the embedding plays a crucial role in terms of accuracy. We
will consider this as a future extension of the work. We report
in Table 1 an overview of the models we used.

7.4 Additional Results

In this Section we provide a few interesting results that we
couldn’t add to the main paper.

Additional kNN Results

As discussed in Section 5, we have found a few instances
where distilling an ORE from an e-bounded input was com-
putationally infeasible, thus motivating us to develop and use
the kNN-boxes technique for the majority of the results in
this paper. In Figure 10 we compare how OREs grow for
increasing values of € and k (i.e., the control parameters of
respectively e-boxes and kNN-boxes). Finally, in Figure 8 we
report a few examples of IMDB reviews that we could solve
for an FC with 100 input words: those examples show OREs
for the largest model - in terms of both input size and parame-
ters - that we could solve by means of HS or MSA, eventually
improved with the Adversarial Attacks routine.

e-ball Results
With a perturbation method defined as an e-ball around each
input vector (see section 3), Table 2 shows a comparison of
ORE length and execution time for both the MSA and HS
methods.

Figure 9 shows how using adversarial attacks speeds up
convergence.

Below is an example of calculating all possible OREs for a
given input and €, and an example of decision bias.

EXECUTION TIME [s]

INPUT INSTANCE (HS Vanilla, HS + Adversarial Attacks, MSA)

€ =0.05 ‘insanely hilarious!' 87.66, 8.67, 47.56

€ = 0.05 this one is not nearlylas 114.99, 10.49, 0.44
dreadful as expected

£=0.05 'this one is baaaaad movie! Timeout, 79.2, 0.79

e=01 so your entire day V\IIaS spent Timeout, 1520.80, 0.44
doing chores ay??!!' [...]

€= 0.05 | just seen ur tweetz plz write Timeout, 159.11, 930.83

bak'[...]

Figure 9: Examples of explanations that were enabled by the adver-
sarial attacks routine. Timeout was set to 2 hours.

e-Closure Explanations
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"An incredibly irritating comedy about

thoroughly vacuous people [...]" "A painfully funny ode to bad behavior"

Figure 10: How an explanation grows when either € (top) or k (bot-
tom) is increased. Model considered is a fully connected with 50
input words on SST dataset (0.89 accuracy). On the left a negative
review that is correctly classified, on the right a positive review that
is misclassified (i.e., the model’s prediction is negative). For spe-
cific ranges of e the Oracle cannot extract an explanation (timeout,
highlighted in red).



Table 1.1: Training

TWITTER SST IMDB
Inputs (Train, Test) 1.55M,50K | 117.22K,1.82K | 25K,25K
Output Classes 2 2 2
Input Length (max, max. used) 88, 50 52, 50 2315, 100
Neural Network Models FC, CNN FC, CNN FC, CNN
Neural Network Layers (min,max) 3,6 3,6 3,6
Accuracy on Test Set (min, max) 0.77,0.81 0.82, 0.89 0.69, 0.81
Number of Networks Parameters (min,max) 3K, 18K 1.3K,10K 5K, 17K

Table 1.2: Explanations

TWITTER | SST | IMDB
Sample Size 40 40 40

Review Length (min-max) 10, 50 10,50 | 25,100

Table 1: Datasets used for training/testing and extracting explanations. We report various metrics concerning the networks and the training
phase (included accuracy on Test set), while in Table 1.2 we report the number of texts for which we have extracted explanations along with
the number of words considered when calculating OREs: samples were chosen to reflect the variety of the original datasets, i.e., a mix of
long/short inputs equally divided into positive and negative instances.

Explanation MSA HS
€ Length Execution Time Execution Time
0.01 5+5 8.08+£7.9 63.70 £ 63.69

0.05 5.5£4.5 176.22 £175.92 339.96 £ 334.66
0.1 7.5+2.5 2539.75 £ 2539.14 | 3563.4 £ 3535.84

Table 2: Comparison between MSA and HS in terms of execution
time for different values of €, and the corresponding explanation
length.

Example 1 Calculating all of the smallest explanations for
an input (¢ = 0.05, FC network, 10 input words, 5 dimen-
sional embedding, SST dataset):

Input: [’strange’, ’'funny’, ’'twisted’, ’brilliant’,
’and’, ’macabre’, ’'<PAD>’, ’'<PAD>’, ’<PAD>’,
’<PAD>"]

Explanations (5 smallest, len=6.0): [’strange’,
funny’, ’twisted’, ’'brilliant’, ’<PAD>’, ’<PAD
>’] [’strange’, ’'funny’, ’'twisted’, ’<PAD>’,
"<PAD>’, '<PAD>’] [’strange’, ’twisted’, ’
brilliant’, '<PAD>’, ’<PAD>’, ’<PAD>’] [’
strange’, ’twisted’, ’'and’, ’'<PAD>’, ’'<PAD>’,
'<PAD>’] [’strange’, ’twisted’, ’macabre’, ’'<
PAD>’, ’<PAD>’, ’<PAD>’]

Example 2 Decision bias, as Derrida cannot be excluded
(e = 0.05, FC network, 10 input words, 5 dimensional em-
bedding, SST dataset):

Input: [’Whether’, ’or’, ’'not’, ’you’, ’are’,
enlightened’, ’'by’, ’any’, ’of’, ’'Derrida’]

Exclude: [’Derrida’]

Explanation: [’Whether’, ’or’, ’'are’, ’enlightened
’, ’by’, ’any’, ’Derrida’]
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