Neural Predictive Monitoring

Luca Bortolussi'**, Francesca Cairoli', Nicola PaolettiZ, Scott A. Smolka?, and
Scott D. Stoller?

! Department of Mathematics and Geosciences, Universita di Trieste, Italy
Department of Computer Science, Royal Holloway, University of London, UK
3 Department of Computer Science, Stony Brook University, USA
4 Modelling and Simulation Group, Saarland University, Germany

Abstract. Neural State Classification (NSC) is a recently proposed method
for runtime predictive monitoring of Hybrid Automata (HA) using deep neural
networks (DNNs). NSC trains a DNN as an approximate reachability predictor
that labels a given HA state x as positive if an unsafe state is reachable from x
within a given time bound, and labels x as negative otherwise. NSC predictors
have very high accuracy, yet are prone to prediction errors that can negatively
impact reliability. To overcome this limitation, we present Neural Predictive
Monitoring (NPM), a technique based on NSC and conformal prediction that
complements NSC predictions with statistically sound estimates of uncertainty.
This yields principled criteria for the rejection of predictions likely to be incorrect,
without knowing the true reachability values. We also present an active learning
method that significantly reduces both the NSC predictor’s error rate and
the percentage of rejected predictions. Our approach is highly efficient, with
computation times on the order of milliseconds, and effective, managing in our
experimental evaluation to successfully reject almost all incorrect predictions.

1 Introduction

Hybrid systems are a central model for many safety-critical, cyber-physical system
applications [2]. Their verification typically amounts to solving a hybrid automata (HA)
reachability checking problem [14]: given a model M of the system expressed as an
HA and a set of unsafe states U, check whether U is reached in any (time-bounded)
path from a set of initial states of M. Due to its high computational cost, reachability
checking is usually limited to design-time (offline) analysis.

Our focus is on the online analysis of hybrid systems and, in particular, on the
predictive monitoring (PM) problem [10]; i.e., the problem of predicting, at runtime,
whether or not an unsafe state can be reached from the current system state within
a given time bound. PM is at the core of architectures for runtime safety assurance
such as Simplex [26], where the system switches to a safe fallback mode whenever PM
indicates the potential for an imminent failure.

In such approaches, PM is invoked periodically and frequently, and thus reachability
needs be determined rapidly, from a single state (the current system state), and typically
for short time horizons. This is in contrast with offline reachability checking, where long
or unbounded time horizons and sizable regions of initial states are typically considered.

2 L. Bortolussi et al.

<
State distribution Calibration set
- z
Reachability oracle ¢
Active
Learning
Training set Neural State Conformal Uncertainty-based
Zy Classifier h prediction rejection criterion

Fig. 1. Overview of the NPM framework. Double-bordered components denote extensions to
the method of [21]. Training of the neural state classifier ~ and retraining via active learning
are performed offline. The only components used at runtime are the classifier h and the
rejection criterion.

PM also differs from traditional runtime verification in that PM is preemptive: it detects
potential safety violations before they occur, not when or after they occur.

Any solution to the PM problem involves a tradeoff between two main requirements:
accuracy of the reachability prediction, and computational efficiency, as the analysis
must execute within strict real-time constraints and typically with limited hardware
resources. In this work, we present Neural Predictive Monitoring (NPM), a machine
learning-based approach to PM that provides high efficiency and accuracy, and crucially,
statistical guarantees on the prediction error.

NPM builds on Neural State Classification (NSC) [21], a recently proposed method
for approximate HA reachability checking using deep neural networks (DNNs). NSC
works by training DNNs as state classifiers using examples computed with an oracle
(an HA model checker). For any state x of the HA, such a classifier labels z as positive
if an unsafe state is reachable from = within a given time bound; otherwise, x is labeled
as negative. Executing a neural state classifier corresponds to computing the output of
a DNN for a single input, and thus is extremely efficient. NSC has also demonstrated
very high accuracy in reachability predictions, owing to the powerful approximation
capabilities of DNNs. Some classification errors are, however, unavoidable, the most
important being false negatives, in which positive states are misclassified as negative.
Such errors may compromise the safety of the system.

NPM overcomes this problem by extending NSC with rigorous methods for quan-
tifying the uncertainty of NSC predictions. NPM can consequently identify and reject
predictions that are likely to produce classification errors. For this purpose, we investigate
the use of Conformal Prediction (CP) [27], a method that provides statistical guarantees
on the predictions of machine-learning models. Importantly, CP requires only very mild
assumptions on the data®, which makes it suitable for state classification of HA models.

Figure 1 provides an overview of the NPM approach. We sample from a distribution
of HA states to generate a training set Z; and a calibration set Z.. An HA reachability
oracle (a model checker or, for deterministic systems, a simulator) is used to label

5 The only assumption is exchangeability, a weaker version of the independent and identically
distributed assumption.

Neural Predictive Monitoring 3

sampled states as positive or negative. A neural state classifier h (i.e., a DNN-based
binary classifier) is derived from Z; via supervised learning.

We use CP to estimate two statistically sound measures of prediction uncertainty,
confidence and credibility. Informally, the confidence of a prediction is the probability
that a reachability prediction for an HA state s corresponds to the true reachability
value of s. Credibility quantifies how likely a given state is to belong to the same
distribution of the training data.

Using confidence and credibility, we derive criteria for anomaly detection, that is, for
rejecting NSC predictions that are likely to be erroneous. The rejection criterion is based
on identifying, via support vector classification, confidence and credibility thresholds
that optimally separate incorrect and correct predictions. The key advantage of such an
approach is that predictions are rejected on rigorous statistical grounds. Furthermore,
computation of CP-based confidence and credibility is very efficient (approximately 1 ms
in our experiments), which makes our NPM method suitable for online analysis and PM.

Finally, our approach includes an active learning strategy to improve the reliability of
the state classifier h. The idea is to employ the CP-based rejection criterion to identify
HA states for which A yields uncertain predictions, and augment the training and
calibration sets with those states. We then train a new state classifier with the augmented
dataset, thus ensuring improved accuracy on the HA states where h performed poorly,
and in turn, a reduced rejection rate. As opposed to simple random sampling of the state
distribution, an advantage of our active learning strategy is its parsimony: by focusing
on the states with uncertain predictions, it requires a significantly smaller number of
additional re-training samples to achieve a given reduction in rejection rate, and thus
significantly reduces the cost of re-training. The active learning procedure can be iterated,
as shown in Fig. 1. We stress that these re-training iterations are part of the training
process, which is performed offline and hence does not affect runtime performance.

In summary, the main contributions of this paper are the following;:

— We develop Neural Predictive Monitoring, a framework for runtime predictive mon-
itoring of hybrid automata that extends neural state classification with conformal
prediction.

— We derive statistically sound and optimal criteria for rejecting unreliable NSC
predictions, which leverage CP-based measures of prediction uncertainty.

— We develop an active learning method designed to reduce both prediction errors
and the rejection rate.

— We evaluate the method on five case studies, demonstrating that our optimal
rejection criteria successfully rejects almost all prediction errors (missing an average
of only 1.4 errors out of 49.4 over a total of 50,000 samples), and that a single
iteration of our active learning strategy reduces the range of prediction errors from
15.2-82 to 3.8-22.8, and the range of overall rejection rates from 3.46%-9.88% to
0.51%—2.74%. The ranges are taken over the set of case studies, and the results
for each case study are averaged over 5 runs.

4 L. Bortolussi et al.

2 Problem Formulation

We describe the predictive monitoring problem for hybrid automata reachability and
the related problem of finding an optimal criterion for rejecting erroneous reachability
predictions. We assume that the reader is familiar with the definitions of HA and HA
reachability. These definitions can be found in e.g. [21].

Problem 1 (Predictive monitoring for HA reachability). Given an HA M with state
space X, time bound T, and set of unsafe states U C X, find a predictor h*, i.e., a
function h*: X —{0,1} such that for all z€ X, h*(z)=1 if M |E=Reach(U,z,T), i.e.,
if it is possible for M, starting in x, to reach a state in U within time T'; h*(z)=0
otherwise.

A state € X is called positive if M |E=Reach(U,x,T). Otherwise, x is negative.

The neural state classification method of [21] provides an approximate solution to the
above PM problem®, a solution based on deep neural networks (DNNs). NSC assumes a
distribution X of HA states and derives a DNN-based reachability predictor h using su-
pervised learning, where the training inputs are sampled according to X" and labeled using
a reachability oracle. Being an approximate solution, i can commit prediction errors: a
state x € X is a false positive (FP) if h(x)=1 but M }£Reach(Ux,T); x is a false negative
(FN) if h(x) =0 but M [=Reach(U,z,T’). These errors are respectively denoted by predi-
cates fn(z) and fp(x). Predicate pe(x)=fn(x)V fp(x) denotes a generic prediction error.

A central objective of this work is to derive, given a predictor h, a rejection criterion
R able to identify states x that are wrongly classified by h. Importantly, for runtime
applicability, R should not require knowing the true reachability value of x, as computing
it would be too costly at runtime. Further, R should be optimal, that is, it should
ensure minimal probability of rejection errors w.r.t. the state distribution X

Problem 2. Given an approximate reachability predictor h, a state distribution X :
X —10,1], and e € {pe,fn,fp}, find an optimal rejection rule R: X — {0,1}, i.e., such
that it minimizes the probability P,.x(e(z)# R(z)).

Note that Problem 2 requires specifying the kind of prediction errors to reject. Indeed,
depending on the application at hand, one might desire to reject only a specific kind
of errors. For instance, in safety-critical applications, FINs are the most critical errors
while FPs are less important.

As we will explain in Section 4, our solution to Problem 2 will consists in identifying
optimal rejection thresholds for confidence and credibility, two statistically sound mea-
sures of prediction uncertainty based on CP. The statistical guarantees of our approach
derive from using these uncertainty measures as the basis of the rejection criterion.

3 Conformal Prediction for Classification

Conformal Prediction (CP) associates measures of reliability to any traditional super-
vised learning problem. It is a very general approach that can be applied across all

5 1In [21], the PM problem is called “state classification problem”, and its solution a “state
classifier”.

Neural Predictive Monitoring 5

existing classification and regression methods [5]. Since we are interested in the analysis
of the DNN-based state classifiers of NSC, we present the theoretical foundations of
CP in relation to a generic classification problem.

Let X be the input space, Y ={y',....y°} be the set of labels (or classes), and define
Z =X xY. The classification model is represented as a function h:X — [0,1]° mapping
inputs into a vector of class likelihoods, such that the class predicted by h corresponds
to the class with the highest likelihood. In the context of PM of HA reachability, X
is the HA state space, Y ={0,1} (¢c=2) indicates the possible reachability values, and
h is the predictor”.

Let us introduce some notation: for a generic input x;, we denote with y; the true
label of z; and with y; the label predicted by h. Test points, whose true labels are
unknown, are denoted by x,.

The CP algorithm outputs prediction regions, instead of single point predictions:
given a significance level € € (0,1) and a test point z;, its prediction region, I'F CY, is
a set of labels guaranteed to contain the true label y; with probability 1—&. The main
ingredients of CP are: a nonconformity function f:Z—R, a set of labelled examples
7' CZ, a classification model h trained on a subset of Z’, and a statistical test. The
nonconformity function f(z) measures the “strangeness” of an example z; = (z;,y;),
i.e., the deviation between the label y; and the corresponding prediction h(x;).

3.1 CP algorithm for classification

Given a set of examples Z' C Z, a test input z, € X, and a significance level € €[0,1],CP
computes a prediction region IS for z, as follows.

1. Divide Z’ into a training set Z;, and calibration set Z.. Let ¢=|Z.| be the size
of the calibration set.

2. Train a model h using Z;.

3. Define a nonconformity function f((z;,y;))=A(h(x;),y:), ie., choose a metric A
to measure the distance between h(z;) and y; (see Section 3.2).

4. Apply f(2) to each example z in Z. and sort the resulting nonconformity scores
{a=f(z)|z€ Z.} in descending order: a; >+ > ay.

5. Compute the nonconformity scores ozl = f((z.,57)) for the test input z, and each

possible label j€{1,...,c}. Then, compute the smoothed p-value

{2 € Ze:a;>al}] +9\{zi€Zczai:aﬂ;}|+1

= q+1 q+1

; 1)

where 6 €U[0,1] is a tie-breaking random variable. Note that pi represents the
portion of calibration examples that are at least as nonconforming as the tentatively
labelled test example (z,5).

6. Return the prediction region

re={y/eY:pl>e}. (2)
together with a vector of p-values, one for each class.

7 We will interchangeably use the term “predictor” for the function returning a vector of
class likelihoods, and for the function returning the class with highest likelihood.

6 L. Bortolussi et al.

Note that in this approach, called inductive CP [19], steps 1-4 are performed only once,
while Steps 5-6 are performed for every test point .

The rationale is to use a statistical test, more precisely the Neyman-Pearson theory
for hypothesis testing and confidence intervals [15], to check if (z.,y7) is particularly
nonconforming compared to the calibration examples. The unknown distribution of
f(2), referred to as Q, is estimated applying f to all calibration examples. Then the
scores ok are computed for every possible label 47 in order to test for the null hypothesis
o ~ Q. The null hypothesis is rejected if the p-value associated to o is smaller
than the significance level €. If a label is rejected, meaning if it appears unlikely that
f((w,y7)) ~Q, we do not include this label in I':. Therefore, given ¢, the prediction
region contains only those labels for which we could not reject the null hypothesis.

3.2 Nonconformity function

A nonconformity function is well-defined if it assigns low scores to correct predictions
and high scores to wrong predictions. A natural choice for f, based on the underlying
model h, is f(z) = A(h(z;),y;), where A is a suitable distance®. Recall that, for
an input x € X, the output of h is a vector of class likelihoods, which we denote
by h(z)=[Pr(y1]2),--.,Pn(yc|x)]. In classification problems, a common well-defined
nonconformity function is obtained by defining A as

A(h(xi)yi) = 1= Pu(yilx:), 3)

where P, (y;|z;) is the likelihood of class y; when the model h is applied on z;. If
h correctly predicts y; for input z;, the corresponding likelihood P, (y;|x;) is high
(the highest among all classes) and the resulting nonconformity score is low. The
opposite holds when h does not predict y;. The nonconformity measure chosen for our
experiments, Equation 3, preserves the ordering of the class likelihoods predicted by h.

3.3 Confidence and credibility

Observe that, for significance levels €1 > &9, the corresponding prediction regions are
such that 1"t CI'*2. It follows that, given an input x., if ¢ is lower than all its p-values,
Le. e<minj_y . p’, then the region I'¢ contains all the labels. As e increases, fewer
and fewer classes will have a p-value higher than e. That is, the region shrinks as ¢
increases. In particular, I'f is empty when e >max;—; . pi.

The confidence of a point x, € X, 1—-,, measures how likely is our prediction for
x4 compared to all other possible classifications (according to the calibration set). It
is computed as one minus the smallest value of € for which the conformal region is
a single label, i.e. the second largest p-value ~,:

1—v,=sup{l—e:|[;|=1}.

The credibility, c, indicates how suitable the training data are to classify that specific
example. In practice, it is the smallest ¢ for which the prediction region is empty, i.e.

8 The choice of A is not very important, as long as it is symmetric.

Neural Predictive Monitoring 7

the highest p-value according to the calibration set, which corresponds to the p-value
of the predicted class:
c.=inf{e:|I';|=0}.

Note that if v, <e, then the corresponding prediction region I'S contains at most
one class. If both 7, <e and ¢, >¢ hold, then the prediction region contains ezactly one
class, i.e., the one predicted by h. In other words, the interval [y.,c,) contains all the
¢ values for which we are sure that 'S ={g.}. It follows that the higher 1—~, and ¢,
are, the more reliable the prediction . is, because we have an expanded range [yy,cx)
of significance values by which), is valid. Indeed, in the extreme scenario where c, =1
and v, =0, then I'f ={§.} for any value of e. This is why, as we will explain in the
next section, our uncertainty-based rejection criterion relies on excluding points with
low values of 1—7, and c,. We stress, in particular, the following statistical guarantee:
the probability that the true prediction for x, is exactly 7. is at most 1—-,.

In binary classification problems, each point x, has only two p-values, one for each class,
which coincide with ¢, (p-value of the predicted class) and +, (p-value of the other class).

4 Uncertainty-based Rejection Criteria

Confidence and credibility measure how much a prediction can be trusted. Our goal
is to leverage these two measures of uncertainty to identify a criterion to detect errors
of the reachability predictor. The criterion is also required to distinguish between
false-negative and false-positives errors.

The rationale is that every new input x is required to have values of confidence,
1—~, and credibility, ¢, sufficiently high in order for the classification to be accepted.
However, determining optimal thresholds is a non-trivial task.

In order to automatically identify optimal thresholds, we proceed with an additional
supervised learning approach. For this purpose, we introduce a cross-validation strat-
egy to compute values of confidence and credibility, using Z. as validation set. The
cross-validation strategy consists of removing the j-th score, ¢, in order to compute
7; and ¢;, i.e. the p-values at x; € X, where X.={z|(x,y) € Z.}. In this way, we can
compute confidence, 1—-y, and credibility, ¢, for every point in the calibration set.

We now state our supervised learning approach to derive the optimal rejection thresh-
olds. Starting from the calibration set, we construct two training datasets, D™ and D/?,
which will be used to learn thresholds specific to FN and FP errors, respectively. The
inputs of dataset D™ (DfP) are the confidence and credibility values of the calibration
points, and these inputs are labelled with 1 or 0 depending on whether the classifier
h makes a FN (FP) error on the corresponding calibration point. Formally,

D" ={((j.¢)s) | € Xedy =1(5=0Ay; =1)}
DI ={((vpei) i) |2 € Xeldy =155 =17y, =0)},

where I(pred) equals 1 if predicate pred is true and equals 0 otherwise.

For simplicity, let us now focus on one of the two cases, DI™. Analogous reasoning
applies to D{; P 'We seek to find confidence and credibility values that optimally separate
the points in DI™ in relation to their classes, that is, separate points yielding FN errors

8 L. Bortolussi et al.

from those that do not. We solve this problem by learning two linear Support Vector
Classifiers (1-SVCs), trained on pairs (1—-,l) and (¢,l), respectively. In this way, we
identify individual confidence and credibility thresholds, denoted by 1—~/™ and ¢/™,
respectively”. Given a test point x, with predicted label), confidence 1—+, and
credibility ¢*, the learned thresholds establish two rejection criteria: one for confidence,
RI™(w,)=(1—7. <1—+"), and one for credibility, RI"(z,)=(c. <cf™).

Proposition 1. Both Rl:" (R};p) and R{™ (RSP) are the best approzimate solutions
of Problem 2, i.e., they are such that the probability of wrongly rejecting or accepting
a FN (FP) prediction is minimal.

Proof (Sketch). A SVC finds the maximum-margin hyper-plane that separates the
classes, i.e. it maximizes the distance between the hyper-plane and the nearest point
from either group. In general the larger the margin, the lower the generalization
error. If the classes overlap the exact separation of the training data can lead to poor
generalization. The SVC allows some of the training points to be misclassified, with a
penalty that increases linearly with the distance from that boundary. The optimization
goal is to maximize the margin, while penalizing points that lie on the wrong side of
the hyper-plane (see Chapter 7 of [7] for a complete treatment). Therefore, the learned
hyperplane optimally separates erroneous from non-erroneous predictions, that is, the
probability, over the calibration set, that a prediction is wrongly rejected or wrongly
accepted is minimal and so is the generalization error. Since we are cross-validating, i.e.
we are approximating a sample from the data distribution, then the criterion is optimal
for any input test point.

The final rejection criterion is a conservative combination of the four rejection criteria.
A test point z, is rejected if:

R(z,)= (1. <max(1—+{" 1-7/P)) V (¢, <max(c[" c/P)). (4)

Alternatively, one can implement rejection criteria specific to FN (FP) errors by using
only the thresholds 1—~/™ and ¢/™ (1—+/? and ¢/P).

Tuning of SVC hyperparameters. In NSC, we deal with high-accuracy state classifiers.
This implies that the datasets D¢, with e€{fp,fn}, are highly unbalanced, as they
contain more examples of correct classifications (label 0) than of classification errors
(label 1). In binary classification problems, such as our 1-SVCs, accuracy can be mis-
leading with imbalanced datasets, as any model that “blindly” assigns the label of the
most frequent class to any input will have high accuracy.

A simple method to handle imbalanced classes in SVC is to design an empirical
penalty matrix P,, which assigns different error penalties by class [6]. In particular, the
(i,j)-th entry of P, gives the penalty for classifying an instance of class ¢ as class j. Of
course, when ¢=j, the penalty is null. The penalty matrix for dataset D¢ is defined as

0 —L—
Pe= |:ch QTE(% ne):|’ (5)

2N

9 As opposed to learning a linear combination of confidence and credibility, which is less
interpretable.

Neural Predictive Monitoring 9

where n. is the number of points belonging to class 1 in dataset D¢, and r. is a parameter
influencing how many errors of type e we are willing to accept. The term 2%, which
represents the penalty for wrongly classifying an error of type e as correct, increases as
n. decreases. Note that, when r. =1 and the dataset is perfectly balanced (¢=2n.), the
penalties are equals: % = M+ne =1. Further, if 7. > 1, the penalty term increases,
leading to more strict rejection thresholds and higher overall rejection rates. On the
contrary, if r, <1, the penalty decreases, leading to possibly miss some errors of type e.

5 Active Learning

Recall that we are dealing with two combined learning problems: learning a prediction
rule (i.e., a state classifier) using the training set Z;, and learning a rejection rule using
the calibration sets D™ and DJP. As the accuracy of a classifier increases with the
quality and the quantity of observed data, adding samples to Z; will generate a more
accurate predictor, and similarly, adding samples to D{ " and DZP will lead to more
precise rejection thresholds. Ideally, one wants to maximize accuracy while using the
least possible amount of additional samples, because obtaining labeled data is expensive
(in NSC, labelling each sample entails solving a reachability checking problem), and the
size of the datasets affect the complexity and the dimension of the problem. Therefore,
to improve the accuracy of our learning models efficiently, we need a strategy to identify
the most “informative” additional samples.

Our solution is uncertainty sampling-based active learning, where the re-training
points are derived by first sampling a large pool of unlabeled data, and then considering
only those points where the current predictor A is still uncertain. We develop an efficient
query strategy that leverages the CP-based measures of uncertainty, and in particular,
the rejection rule of Section 4, since rejected points are indeed the most uncertain
ones. The proposed active learning method should reduce both the overall number of
false-positive and false-negative predictions and the overall rejection rate.

1 Calibration scores sorted Credibility landscape Credibility landscape
08¢ 20— 08 20 0.8
H 4
06§ 15 0.6 15 0.6
0.4 10 0.4 10 0.4
0
0 2000 4000 -60 -40 -20 O 20 -60 -40 -20 O 20
1 Calibration scores sorted Credibility landscape Credibility landscape
08 20\¥ __llos 20«) 08
0.6 15— M6 15 ——ec— 06
0.4 P ——— e —
0. 04 10 . Hoa
0.2
S/———e—-\ ———— Qo2 SEE————
0 2 4
<104 60 -40 -20 0 20 60 -40 20 0 20

Fig. 2. Spiking Neuron: calibration scores (first column) and credibility landscapes using the
initial calibration set Z. (top line) versus the query set Zg (bottom line). The landscapes are
obtained for different instances of the predictor h, trained on the same dataset Z;.

10 L. Bortolussi et al.

5.1 Refining the query strategy

Sensitiwity of the uncertainty measures. The distribution of calibration scores depends
both on the case study at hand and on the trained classifier. If such a classifier ~ has high
accuracy, then most of the calibration scores a,...,aq Will be close to zero. Each p-value
pi of an unseen test point x, counts the number of calibration scores greater than o, the
non-conformity score for label j at x.. Credibility, which is the p-value associated with the
class predicted by h, is expected to have a small score and therefore a high p-value. On the
contrary, 7, which is the p-value associated to the other (non-predicted) class, is expected
to have a larger score. However, given the high accuracy of h, the number of calibration
scores significantly greater than zero is very small. Therefore, the fraction of calibration
scores determining -y is not very sensitive to changes in the value of «, which is deter-
mined by h(z,). On the contrary, credibility is extremely sensitive to small changes in c.
In general, the sensitivity of confidence with respect to . increases as the accuracy of h
decreases, and vice versa for credibility. Figure 2 shows the credibility landscapes for two
different training instances of model h on the same training set for a concrete case study.
We observe that even if regions where misclassifications take place are always assigned
low credibility values, outside those regions credibility values are subject to high variance.

This sensitivity results in a over-conservative rejection criterion, leading to a high
rejection rate and in turn, to an inefficient query strategy. However, if we enrich the
calibration set using additional samples with non-zero a-scores, we can reduce such
sensitivity, thereby making credibility more robust with respect to retraining. This
process is illustrated in Figure 2, where the additional non-zero a-scores (bottom) lead
to a more robust credibility landscape, where low-credibility regions are now more
tightly centred around areas of misclassification.

Since samples with uncertain predictions will have non-zero a-scores™”, we will use the
original rejection rule to enrich the calibration set, thereby deriving a refined rejection
rule and in turn, a refined and more effective query strategy for active learning. Notice
that, once the model h has been retrained we must accordingly retrain the rejection
rule as well, since values of confidence and credibility depend on the predictions of h.

10

5.2 Active learning algorithm

The active learning is divided in two phases. In the first phase, we refine the query
strategy: we use the current rejection rule to select a batch of uncertain points, tem-
porarily add these points to the calibration set, and obtain an updated rejection rule,
which represents our query strategy.

In the second phase, using the refined query strategy, we sample another batch of
points, divide it in two groups, and use them to augment training and calibration sets,
respectively. The resulting predictor h,, trained on the augmented set, is expected to
be more accurate then h. Further, h, is used to update the a-scores and the values of
confidence and credibility for the augmented calibration set. This results in an updated
rejection rule, for which a lower rejection rate is expected.

10 Note indeed that the a-score of a sample (xs,y:) is zero only if h both correctly predicts
y; and the corresponding class likelihood Py (y; |x;) is 1.

Neural Predictive Monitoring 11

We now describe in details our uncertainty sampling-based active learning algorithm,
which given an initial training set Z;, a prediction rule h trained on Z;, an initial
calibration set Z, a rejection rule R trained on Z. using some rejection ratios r s, and
T fp, computes an enhanced predictor h, and enhanced rejection rule R, as follows.

1. Refining the query strategy:
— Randomly select a large number of input points, compute their confidence and
credibility using h, and identify the subset @ of points rejected based on R.
— Invoke the reachability oracle to label the points in @) and define a query set
Zg by adding these points to Z.
— Obtain an updated rejection rule Rg from Zg using the method of Section 4
with rejection ratios ry, and rp,,.

2. Active phase:
— Randomly select a large number of input points, compute their confidence and
credibility using h, and identify the subset A of points rejected based on Rg.
— Invoke the reachability oracle to label the points in A, divide the data into two
groups and add them respectively to Z; and Z., obtaining an augmented training
set, Z;*, and an augmented calibration set, Z¢.
— Train a new predictor h, from Z7.
— Train new detection thresholds using the method of Section 4, with rejection
ratios 7y, and r¢p, and obtain the enhanced rejection rule R,.

Note that the above algorithm can be iterated, using Z¢, Z¢, hq, and R, as new inputs.

It is important to observe that, in order for the active learning algorithm to preserve
the statistical soundness of conformal prediction, the augmented training and calibration
sets Z and Z¢ must be sampled from the same distribution. This is guaranteed by
the fact that, in the active learning phase, we add new points to both the training and
the calibration dataset, and these points are sampled from the same distribution (in
particular, we apply the same random sampling method and same rejection criterion).
The only caveat is ensuring that the ratio between the number of samples in Z, and
Z, is preserved on the augmented datasets.

6 Experimental Results

In order to experimentally evaluate the proposed method, both the initial approach and
the active learning approach have been applied to hybrid systems with varying degrees
of complexity. We consider three deterministic case studies: the spiking neuron [21],
which is a two-dimensional model with non-linear dynamics, the artificial pancreas
(AP) [18], which is a nine-dimensional non-linear model, and the helicopter [21], a linear
model with 29 variables. In addition, we analyze two non-deterministic models with
non-linear dynamics: a cruise controller [21], whose input space has four dimensions,
and a triple water tank (WT) [1], which is a three-dimensional model. For the AP
model, the unsafe set U corresponds to hypoglycemia states, i.e., U= BG <3.9 mmol/L,
where BG is the blood glucose variable. The state distribution considers uniformly
distributed values of plasma glucose and insulin. The insulin control input is fixed
to the basal value. The time bound is T'=240. For the WT model, U is given by

12 L. Bortolussi et al.

states where the water level of any of the tanks falls outside a given safe interval I, i.e.,
U= \/?:11‘1' &I, where x; is the water level of tank i. The state distribution considers
water levels uniformly distributed within the safe interval. The time bound is T'=1.
Details on the other case studies are available in Appendix D of [20].

Experimental settings. The entire pipeline is implemented in MATLAB. Motivated
by the results presented in [21], we define the state classifier as a sigmoid DNN. Each
case study shares the same DNN architecture: 3 hidden layers, each consisting of 10
neurons with the Tan-Sigmoid activation function and an output layer with 1 neuron
with the Log-Sigmoid activation function. In particular, the output of the DNN, which
is our model h, is the likelihood of class 1, i.e., the likelihood that the hybrid automaton
state is positive. Training is performed using MATLAB’s train function, with the
Levenberg-Marquardt backpropagation algorithm optimizing the mean square error loss
function, and the Nguyen-Widrow initialization method for the NN layers. Training the
DNNs takes from 2 to 39 seconds. For every model we generate an initial dataset Z " of
20,000 samples and a test set Zyeq¢ of 10,000 samples. The helicopter model is the only
exception, where, due to the higher dimensionality, a dataset of 100,000 samples is used.
The training and calibration sets are two subsets of Z extracted as follows: a sample
zeZ has probability 0.7 of falling into Z; and probability 0.3 of falling into Z.. We used
the dReal solver [13] as reachability oracle to label the datasets for the non-deterministic
case studies. For deterministic ones, we used an HA simulator implemented in MATLAB.

Computational performance. We want our method to be capable of working at runtime,
which means it must be extremely fast in making predictions and deciding whether to
trust them. We must clarify that the time required to train the method does not affect its
runtime efficiency, as it is performed in advance only once. Learning the rejection criteria,
which is also performed offline, requires the following steps: (i) train the state classifier,

(ii) generate the datasets DZP /¥ " which requires computing the p-values for each point
in Z., and (iii) train four I-SVCs. Executing the entire pipeline takes around 10 seconds,
it |Z ' |=20K, and around 80 seconds if |Z ' |=100K. Nonetheless, given a new input .,
it takes from 0.3 up to 2 ms to evaluate the rejection criterion. This evaluation time does
not depend on the dimension of the hybrid system, but it is affected by the size of the
calibration set Z.. Refining the uncertainty measures leads to an increase in the size of Z.
Hence the aim of active learning is to improve the performance while keeping the tech-
nique as efficient as possible. Instead of adding random samples to Z,, our active learning
approach adds only samples that are extremely informative and brings a consistent im-
provement in the precision of the uncertainty measures. It carries two additional training
costs: the time needed to compute confidence and credibility for a large pool of data, and
the time the oracle needs to compute labels for the uncertain points. The latter dominates,
especially for non-deterministic systems, since their oracles are more expensive. Therefore,
if the rejection rate is relatively high and we consider a large pool of points, which allows
for a good exploration, the procedure may be long. However, this time spent to optimally
tune the performance improves the run-time behaviour of our method. This is another
good reason to improve the query strategy before proceeding with the active learning
approach. The time required to refine the query strategy depends on the size of the pool
of data, the higher the initial rejection rate, the higher the number of queries. However,

Neural Predictive Monitoring 13

the pool has to be large in order to find significant instances. Adding observations about
uncertain samples results in a more precise rejection rule with a lower rejection rate.
Therefore, points selected with the refined query strategy are fewer and more informative.

Ezperiments. We compare our uncertainty-based query strategy with a random sampling
strategy. Both strategies add the same number of samples to Z; and the same number of
samples to Z.. However, in the first case, referred to as active approach, these samples
are selected according to the refined query strategy, whereas in the second case, referred
to as passive approach, they are randomly sampled following a uniform distribution,
the same distribution used to generate the initial datasets.

The duration of the active learning phase depends on the sizes of the sample pools. In
our study, the pool used to refine the query strategy contains 100,000 samples (250,000
for the helicopter), whereas the pool used for the active learning phase contains 200,000
samples (500,000 for the helicopter). In particular, one iteration of the active learning
procedure took around 10 minutes for the spiking neuron and the artificial pancreas,
the simplest deterministic models, and around 70 minutes for the helicopter, due to the
larger pools. For the non-deterministic models (triple water tank and cruise controller),
it took around 2.25 hours. This time is expected to decrease for subsequent iterations,
as the rejection rate will be lower (leading to fewer retraining samples). Note that
retraining is performed offline and does not affect runtime performance of our approach.

Table 1 and Table 2 present the experimental performance of the rejection criterion
obtained using the original method in Section 4 and the refined rejection criteria
obtained using the active and passive approaches. All results are averaged over 5 runs;
in each run, we resample Z; and Z, from Z and retrain the DNN. Table 1 shows the
performance obtained using the initial rejection rule on the test set Zies:. The accuracy
of the NSC, averaged over the five case studies, is 99.5832%. The rejection criterion
recognizes well almost all the errors (with average accuracy over the accepted predictions
of 99.9956%), but the overall rejection rate is around 5%, a non-negligible amount.
We see from Table 2 that the passive learning approach provides little improvement:
the overall number of errors is similar to the initial one and the rejection rate is still
relatively large. Table 2 also shows that the active approach provides much more
significant improvements: the overall rejection rate and the number of errors made
by the NSC fall dramatically, while preserving the ability of recognizing almost all
of the errors, both false positives and false negatives, made by the predictor (average
accuracy over the accepted predictions of 99.9992%). The overall rejection rates span
between 3.46% and 9.88% when the initial rejection rule is applied. In contrast, the
active learning approach achieves rejection rates between 0.51% and 2.74%. The overall
number of errors reduces as well: the range of false-negative errors reduces from 7—33.2
to 1.8—11.6, while the range of false-positive errors reduces from 8.2—48.8 to 2—11.2.

In our analysis, parameters r¢, and 7, are set to one, i.e., they do not influence
the selection of rejection thresholds. If false negatives have severe consequences, one
can design a stricter policy by assigning 7, a value greater than one. On the contrary,
we can relax the policy on false positives, assigning to 7, a value smaller than one,
and thus reducing the overall rejection rate. In general, it may be wise to first improve
the performance of the predictor in recognizing both types of errors via active learning,
and then decide to reduce the overall rejection rate by allowing some false positives.

14 L. Bortolussi et al.

INITTAL
Model|accuracy fp fn |rej. rate

Spiking Neuron (SN)|99.582% |24.4/24.6|17.2/17.2| 5.68%
Artificial Pancreas (AP)|99.488% (30.4/30.6/20.6/20.6| 6.23%
Helicopter (HE)|99.180% [47.4/48.8| 33/33.2 | 9.88%

Water Tank (WT)[99.818% | 8.6/8.6 | 9.6/9.6 | 5.97%
Cruise Controller (CC)|99.848% | 8.2/8.2 7/7 | 3.46%

Table 1. Performance of the initial rejection criterion on the test set. Results are averaged
over 5 runs. Accuracy is the percentage of points in the test set that are correctly predicted.
The fp and fn columns show the ratio of false positives and false negatives, respectively,
recognized by each criteria. The last column shows the percentage of point rejected over the
entire test set.

PASSIVE ACTIVE

Model|# samples fp fn rej. ratel|accuracy| fp fn |rej. rate
SN 5748.2 |18.2/18.2]10.6/10.8| 3.91% [|99.918% | 2.8/2.8 | 5.4/5.4 | 1.16%
AP 6081.8 | 23/23.4 {19.4/19.4| 5.94% [/99.892%| 6.2/6.2 | 4.4/4.6 | 1.02%
HE 22014.6 |31.4/31.6| 26/26.6 | 7.21% ||99.772%|11.2/11.2|110.4/11.6| 2.74%
WT 4130.2 8.4/8.4 110.2/10.4| 4.43% {(99.962%| 2.8/2.8 1/1 0.70%
CC | 22806 | 6/6 6/6 | 515% ||99.962%| 2/2 | 1.8/1.8 | 0.51%

Table 2. Performance of rejection criteria obtained by refining the initial rejection criterion
using the passive and active approaches. Results are averaged over 5 runs. Most of the columns
have the same meaning as in Table 1. “# samples” is the number of samples added globally to
Z; and Z..

7 Related Work

A number of methods have been proposed for online reachability analysis that rely on
separating the reachability computation into distinct offline and online phases. However,
these methods are limited to restricted classes of models [10], or require handcrafted
optimization of the HA’s derivatives [4], or are efficient only for low-dimensional systems
and simple dynamics [25].

In contrast, NSC [21] is based on learning DNN-based classifiers, is fully automated
and has negligible computational cost at runtime. In [11,24], similar techniques are
introduced for neural approximation of Hamilton-Jacobi (HJ) reachability. Our methods
for prediction rejection and active learning are independent of the class of systems and
the machine-learning approximation of reachability, and thus can also be applied to
neural approximations of HJ reachability.

The work of [3] addresses the predictive monitoring problem for stochastic black-box
systems, where a Markov model is inferred offline from observed traces and used to
construct a predictive runtime monitor for probabilistic reachability checking. In contrast
to NSC, this method focuses on discrete-space models, which allows the predictor to
be represented as a look-up table (as opposed to a neural network).

In [22], a method is presented for predictive monitoring of STL specifications with
probabilistic guarantees. These guarantees derive from computing prediction intervals
of ARMA/ARIMA models learned from observed traces. Similarly, we use CP which

Neural Predictive Monitoring 15

also can derive prediction intervals with probabilistic guarantees, with the difference
that CP supports any class of prediction models (including auto-regressive ones).

A related approach to NSC is smoothed model checking [9], where Gaussian pro-
cesses [23] are used to approximate the satisfaction function of stochastic models, i.e.,
mapping model parameters into the satisfaction probability of a specification. Smoothed
model checking leverages Bayesian statistics to quantify prediction uncertainty, but
faces scalability issues as the dimension of the system increases. In contrast, computing
our measure of prediction reliability is very efficient, because it is nearly equivalent to
executing the underlying predictor.'! In Bayesian approaches to uncertainty estimation,
one often does not know the true prior distribution, which is thus often chosen arbitrarily.
However, if the prior is incorrect, the resulting uncertainty measures have no theoretical
base. The CP framework that we use is instead distribution-free and provides uncertainty
information based only on the standard i.i.d. or exchangeability assumption. Avoiding
Bayesian assumptions makes CP conclusions more robust to different underlying data
distributions, which is also shown experimentally in [17].

A basic application of conformal predictors in active learning is presented in [16].
Our approach introduces three important improvements: a more flexible and mean-
ingful combination of confidence and credibility values, automated learning of rejection
thresholds (which are instead fixed in [16]), and refinement of the query strategy.

In [8], we presented a preliminary version of this approach. The present paper greatly
extends and improves that work by including an automated and optimal method to
select rejection thresholds, the active learning method, and an evaluation on larger HA
benchmarks.

8 Conclusion

We have presented Neural Predictive Monitoring, a technique for providing statistical
guarantees on the prediction reliability of neural network-based state classifiers used
for runtime reachability prediction. To this purpose, we have introduced statistically
rigorous measures that quantify the prediction uncertainty of a state classifier. We
have employed these uncertainty measures to derive conservative rejection criteria
that identify, with minimal error, those predictions that can lead to safety-critical
state classification errors. We have further designed an active learning strategy that,
leveraging such uncertainty-based rejection criteria, allow to increase the accuracy of
the reachability predictor and reduce the overall rejection rate.

The strengths of our NPM technique are its effectiveness in identifying and reject-
ing prediction errors and its computational efficiency, which is not directly affected
by the complexity of the system under analysis (but only by the complexity of the
underlying learning problem and classifier). As future work, we plan to extend our
approach to predict quantitative measures of property satisfaction (like the robust STL
semantics [12]), which will require us to develop a regression framework for NPM.

' Evaluating our rejection criterion reduces to computing two p-values (confidence and
credibility). Each p-value is derived by computing a nonconformity score, which requires one
execution of the underlying predictor h, and one search over the array of calibration scores.

16 L. Bortolussi et al.
References
1. dReal - Networked Water Tank Controllers (2017),

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

http://dreal.github.io/benchmarks/networks/water/

Alur, R.: Formal verification of hybrid systems. In: Proceedings of the Ninth ACM
International Conference on Embedded Software (EMSOFT). pp. 273-278 (Oct 2011)
Babaee, R., Gurfinkel, A., Fischmeister, S.: Predictive run-time verification of discrete-time
reachability properties in black-box systems using trace-level abstraction and statistical
learning. In: International Conference on Runtime Verification. pp. 187-204. Springer (2018)
Bak, S., Johnson, T.T., Caccamo, M., Sha, L.: Real-time reachability for verified simplex
design. In: Real-Time Systems Symposium (RTSS), 2014 IEEE. pp. 138-148. IEEE (2014)
Balasubramanian, V., Ho, S.S.; Vovk, V.: Conformal prediction for reliable machine
learning: theory, adaptations and applications. Newnes (2014)

Batuwita, R., Palade, V.: Class imbalance learning methods for support vector machines
(2013)

Bishop, C.M.: Pattern recognition and machine learning. springer (2006)

Bortolussi, L., Cairoli, F., Paoletti, N., Stoller, S.D.: Conformal predictions for hybrid system
state classification. In: From Reactive Systems to Cyber-Physical Systems, to appear (2019)
Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Information and Computation 247, 235-253 (2016)
Chen, X., Sankaranarayanan, S.: Model predictive real-time monitoring of linear systems.
In: Real-Time Systems Symposium (RTSS), 2017 IEEE. pp. 297-306. IEEE (2017)
Djeridane, B., Lygeros, J.: Neural approximation of PDE solutions: An application to
reachability computations. In: Proceedings of the 45th IEEE Conference on Decision
and Control. pp. 3034-3039. IEEE (2006)

Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In:
International Conference on Formal Modeling and Analysis of Timed Systems. pp. 92-106.
Springer (2010)

Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the
reals. In: International Conference on Automated Deduction. pp. 208-214. Springer (2013)
Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.. What’s decidable about hybrid
automata? Journal of computer and system sciences 57(1), 94-124 (1998)

Lehmann, E.L., Romano, J.P.: Testing statistical hypotheses. Springer Science & Business
Media (2006)

Makili, L.E., Sanchez, J.A.V., Dormido-Canto, S.: Active learning using conformal
predictors: application to image classification. Fusion Science and Technology 62(2),
347-355 (2012)

Melluish, T., Saunders, C., Nouretdinov, 1., Vovk, V.: The typicalness framework: a
comparison with the bayesian approach. University of London, Royal Holloway (2001)
Paoletti, N., Liu, K.S., Smolka, S.A., Lin, S.: Data-driven robust control for type 1 diabetes
under meal and exercise uncertainties. In: International Conference on Computational
Methods in Systems Biology. pp. 214-232. Springer (2017)

Papadopoulos, H.: Inductive conformal prediction: Theory and application to neural
networks. In: Tools in artificial intelligence. InTech (2008)

Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural state
classification for hybrid systems. ArXiv e-prints (Jul 2018)

Phan, D., Paoletti, N., Zhang, T., Grosu, R., Smolka, S.A., Stoller, S.D.: Neural
state classification for hybrid systems. In: Automated Technology for Verification
and Analysis. Lecture Notes in Computer Science, vol. 11138, pp. 422-440 (2018).
https://doi.org/10.1007/978-3-030-01090-4_25

22.

23.

24.

25.

26.
27.

Neural Predictive Monitoring 17

Qin, X., Deshmukh, J.V.: Predictive monitoring for signal temporal logic with probabilistic
guarantees. In: Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. pp. 266-267. ACM (2019)

Rasmussen, C.E., Williams, C.K.: Gaussian processes for machine learning, vol. 1. MIT
press Cambridge (2006)

Royo, V.R., Fridovich-Keil, D., Herbert, S., Tomlin, C.J.: Classification-based approximate
reachability with guarantees applied to safe trajectory tracking. arXiv preprint
arXiv:1803.03237 (2018)

Sauter, G., Dierks, H., Franzle, M., Hansen, M.R.: Lightweight hybrid model checking
facilitating online prediction of temporal properties. In: Proceedings of the 21st Nordic
Workshop on Programming Theory. pp. 2022 (2009)

Sha, L.: Using simplicity to control complexity. IEEE Software (4), 20-28 (2001)
Vovk, V., Gammerman, A., Shafer, G.: Algorithmic learning in a random world. Springer
Science & Business Media (2005)

