Neural Predictive Monitoring

Nicola Paoletti

Royal Holloway, University of London, UK

JWW: L Bortolussi, F Cairoli (Università di Trieste), SA Smolka, SD Stoller (Stony Brook University)

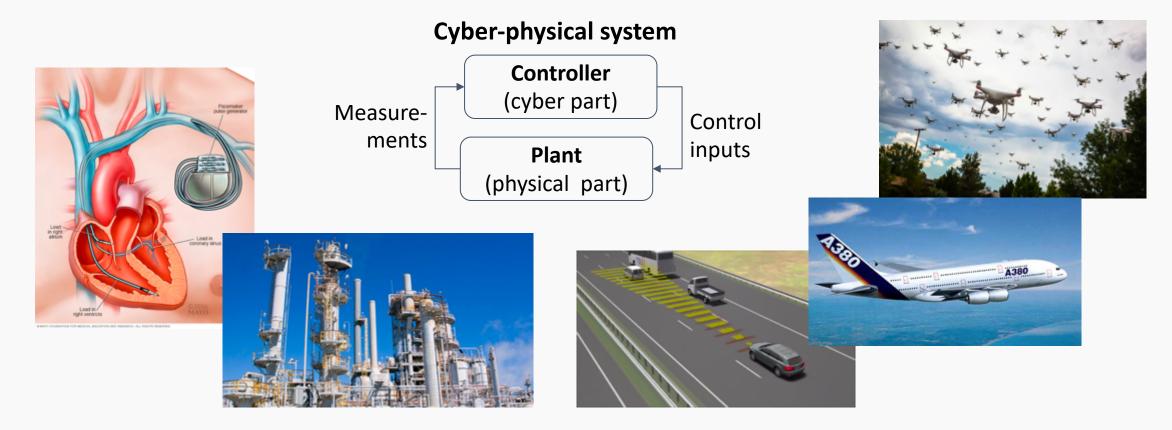
RV 2019 – Porto, 11 October 2019

Outline

- Background
 - Reachability checking vs predictive monitoring for hybrid systems
- Neural Predictive Monitoring
 - Predictive monitoring with neural networks
 - Reject uncertain predictions with statistical guarantees
 - Active learning to improve uncertain predictions
- Experimental results

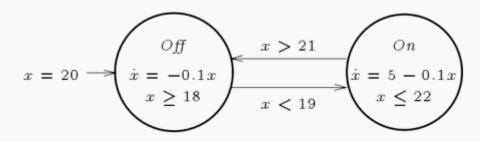
Hybrid system verification

Hybrid and cyber-physical systems are ubiquitous and found in many safety-critical applications



Hybrid system verification

 Hybrid automata (HA) are a common formal model for hybrid and cyberphysical systems

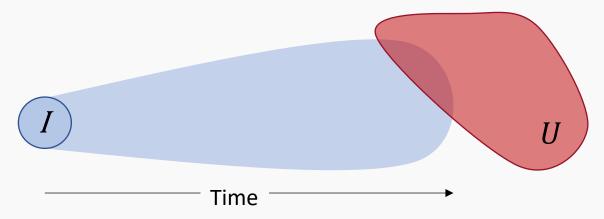


Thermostat from Henzinger, The Theory of Hybrid Automata

HA verification problem usually formulated as reachability

(*Time-bounded*) reachability:

can an HA \mathcal{M} , starting in an initial region I, reach a state $u \in U$ (within time T)?

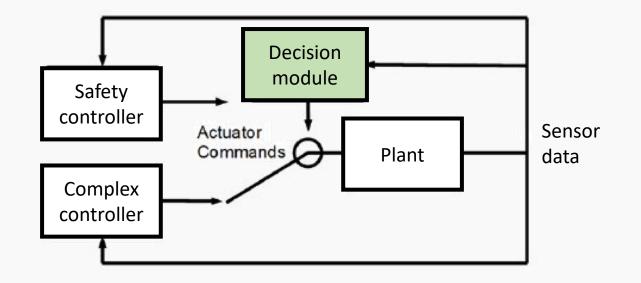


Both bounded and unbounded versions are undecidable

[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]

Motivation – Predictive Monitoring (PM)

- PM: predicting at runtime future violations from current state
- PM is important for runtime safety assurance of HSs and CPSs
- For example, in the Simplex Architecture [Sha, *IEEE Software* (2001)], *decision module* gives control to *safety controller* if a potential safety violation is imminent.



Motivation - Predictive Monitoring (PM)

(Offline) Reachability checking

- Reachability from a (large) region
- One-off analysis, potentially long time horizons
- No hard time constraints

(Online) Predictive Monitoring

- Reachability from a single state
- Analysis is periodic ⇒ short time horizons
- Strict time constraints
- Fully-fledged reachability checking is too expensive for online analysis
- At runtime, real system can deviate from offline model ⇒ strong guarantees of reachability checking no longer valid
- For PM, we need accurate and fast methods

PM problem

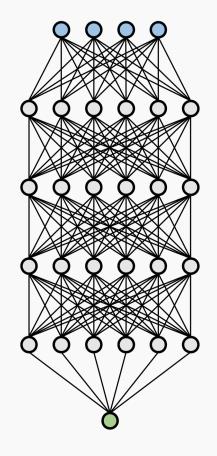
Problem 1 (Predictive monitoring for HA reachability). Given an HA \mathcal{M} with state space X, time bound T, and set of unsafe states $U \subset X$, find a predictor h^* , i.e., a function $h^*: X \to \{0,1\}$ such that for all $x \in X$, $h^*(x) = 1$ if $\mathcal{M} \models \operatorname{Reach}(U, x, T)$, i.e., if it is possible for \mathcal{M} , starting in x, to reach a state in U within time T; $h^*(s) = 0$ otherwise.

A state $x \in X$ is called *positive* if $\mathcal{M} \models \mathsf{Reach}(U, x, T)$. Otherwise, x is *negative*.

THIS IS A BINARY CLASSIFICATION PROBLEM!

Neural networks (NNs) as state classifiers

- Can we train an NN as a state classifier?
- In principle, yes: NNs are universal approximators [Hornik et al, Neural networks 2(5) (1989)]
- Trained NN state classifier runs in constant time -> suitable for predictive monitoring
- Very good accuracy but prediction errors can't be entirely avoided



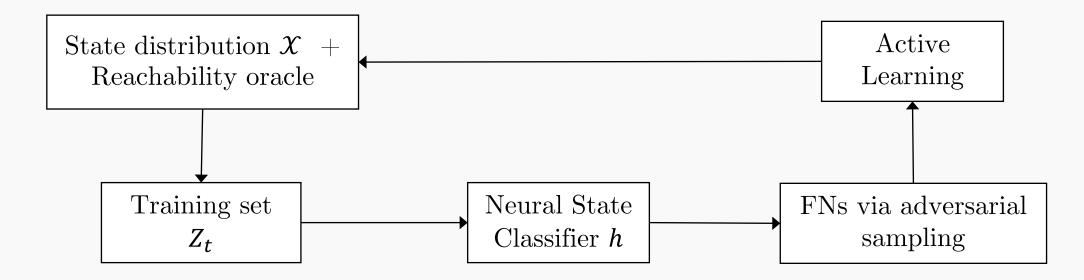
Neural networks (NNs) as state classifiers

Two kinds of prediction errors:

- False positives (FPs): a negative state is predicted to be positive
 - Conservative decision
- False negatives (FNs): a positive state is predicted to be negative
 - Can compromise system's safety!

https://xkcd.com/1838/

Neural State Classification [ATVA'18]

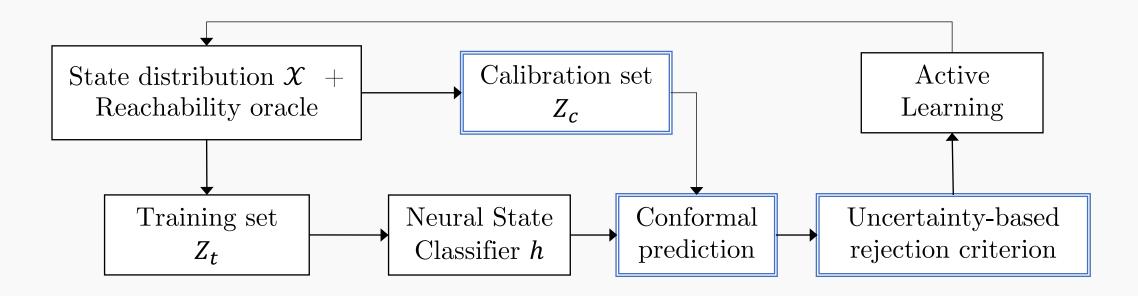


h(x) = likelihood that state x is positive.

Limitation: it can't detect and prevent prediction errors at runtime

D. Phan et al., Neural state classification for hybrid systems. In Proc. ATVA 2018.

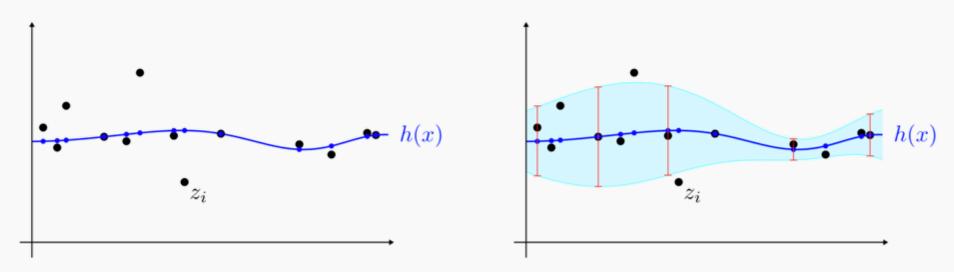
Neural Predictive Monitoring [this work]



- **Conformal Prediction** [Vovk et al] provides statistical guarantees on machine learning predictions
- Allows one to derive sound measures of prediction uncertainty, which we use to reject unreliable predictions, more likely to be wrong

Conformal prediction

- CP works on top of any supervised learning model
- CP complements single-point predictions with a prediction region and uncertainty measures
- Given significance $\epsilon \in (0,1)$ and a test point x^* , prediction region Γ_*^{ϵ} is guaranteed to contain the true class of x^* with probability 1ϵ
- CP is distribution-free (only assumption is exchangeability, a weaker version of iid)

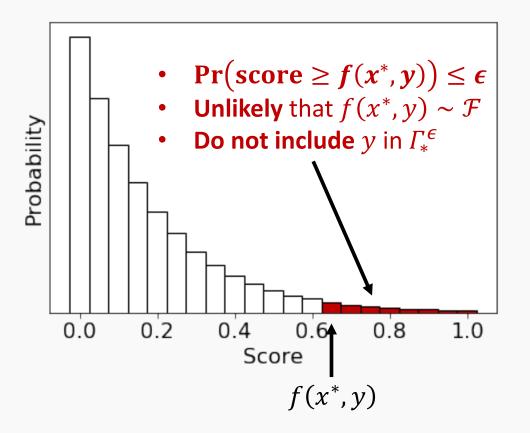


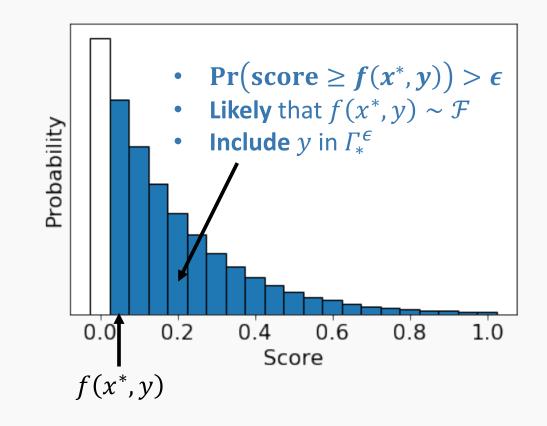
Conformal prediction – Idea (1/2)

- Prediction region Γ_*^ϵ contains the classes likely to be true
- Define non-conformity function (NCF) f that, for a point (x, y), measures the distance between y and the model prediction h(x)
 - In our case, f(x, y) = |y h(x)| ($h(x) \in [0,1], y \in \{0,1\}$)
 - The distribution of scores $\mathcal{F} = \Pr_{x \sim \chi}(f(x, h^*(x)))$ fully characterizes distance between predictions and true classes
- True \mathcal{F} is unknown \rightarrow estimate it using a set of calibration points Z_c sampled from \mathcal{X} and disjoint from training set
 - Resulting empirical distribution converges to true distribution for large samples

Conformal prediction – Idea (2/2)

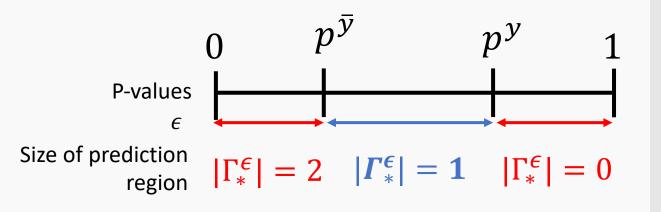
- Γ_*^{ϵ} for test point x^* contains all y s.t. it is likely that $f(x^*, y) \sim \mathcal{F}$
 - hypothesis testing at level ϵ of $H_0: f(x^*, y) \sim \mathcal{F} \vee S H_a: f(x^*, y) \neq \mathcal{F}$





Prediction reliability measures

- Let y be the class predicted by h. Call p^y the p-value $Pr(score \ge f(x^*, y))$
- Easy to see that $p^{y} \ge p^{\overline{y}}$ ($\overline{y} = \{0,1\} \setminus \{y\}$)
 - Because $f(x^*, y) \le f(x^*, \overline{y})$



- Prediction is reliable when $|\Gamma_*^{\epsilon}| = 1$ (i.e., Γ_*^{ϵ} contains only one class, the true one with probability $1 - \epsilon$)
- high p^{y} and low $p^{\overline{y}} \rightarrow$ large range of ϵ values for which $|\Gamma_{*}^{\epsilon}| = 1$

Uncertainty-based rejection criterion

- Idea: at runtime, reject all reachability predictions with low values of p^{γ} (aka credibility, c) and $1 p^{\overline{\gamma}}$ (aka confidence, 1γ)
- Very efficient criterion \rightarrow it reduces to just computing two p-values
- Independent of the choice of ϵ
- But how to select thresholds for 1γ and c?
- Learn 1γ and c thresholds that optimally separate correct and wrong predictions

Learning optimal rejection thresholds

- Cross validation strategy using Z_c as validation set
 - compute $1 \gamma^{i}$ and c^{i} for each calibration point *i* (after removing *i* from Z_{c})
- Train two support vector classifiers (SVCs) over $\{(1 \gamma^i, err^i)\}_i$ and $\{(c^i, err^i)\}_i$ (err^i true iff h correctly predicts point i)
- Results in thresholds $1 \gamma_{\tau}$ and c_{τ} below which prediction is rejected
 - Four thresholds if we distinguish between FN and FP errors
- The rejection criterion is optimal
 - SVCs maximize separation between classes.
 - 1-dimensional input, so linear SVCs suffice

Uncertainty-based active learning

• Idea: retrain after augmenting training and calibration sets with rejected sample, to improve prediction accuracy and rejection rate

Algorithm

- 1. Draw a random input sample. Keep only rejected (unreliable) points *R*.
- 2. Label *R* using reachability oracle. Redistribute samples into training and calibration sets.
- 3. Train a new predictor on augmented training set
- 4. Train new rejection thresholds on augmented calibration set
- 5. Repeat 1-4 as desired

Experimental evaluation

Initial training									
Model	accuracy	\mathbf{fp}	\mathbf{fn}	rej. rate					
Spiking Neuron (SN)	99.582%	24.4/24.6	17.2/17.2	5.68%					
Artificial Pancreas (AP)	99.488%	30.4/30.6	20.6/20.6	6.23%					
Helicopter (HE)	99.180%	47.4/48.8	33/33.2	9.88%					
Water Tank (WT)	99.818%	8.6/8.6	9.6/9.6	5.97%					
Cruise Controller (CC)	99.848%	8.2/8.2	7/7	3.46%					

20K training set (70% training, 30% calibration). 100K for Helicopter. 10K test set. Results averaged over 5 runs.

- Rejection criterion identifies almost all FP and FN errors
- Excessive rejection rate

Experimental evaluation

Passive re-training (random samples) vs Active Learning											
		PASSIVE			ACTIVE						
Model	# samples	fp	fn	rej. rate	accuracy	fp	fn	rej. rate			
SN	5748.2	18.2/18.2	10.6/10.8	3.91%	99.918%	2.8/2.8	5.4/5.4	1.16%			
AP	6081.8	23/23.4	19.4/19.4	5.94%	99.892%	6.2/6.2	4.4/4.6	1.02%			
HE	22014.6	31.4/31.6	26/26.6	7.21%	99.772%	11.2/11.2	10.4/11.6	2.74%			
WT	4130.2	8.4/8.4	10.2/10.4	4.43%	99.962%	2.8/2.8	1/1	0.70%			
CC	2280.6	6/6	6/6	5.15%	99.962%	2/2	1.8/1.8	0.51%			
One re-training iteration. Re-training samples selected from batches of 200K (500K for helicopte											

- Active learning greatly reduces prediction error and rejection rate
- No significant improvement with passive approach

Related work on predictive monitoring

- Linear systems [Chen et al, RTSS (2017), Yoon et al, RV (2019)]
- Discrete-space Markov models [Babaee et al, RV (2018), RV (2019)]
- Prediction regions for STL over ARMA models [Quin et al, HSCC (2019)]
- Neural approximation of PDEs for HJ reachability [Djeridane et al, CDC (2006)] [Rubies-Royo et al, arXiv:1803.03237 (2019)]
- Smoothed model checking: Gaussian processes to approximate the satisfaction function of continuous-time Markov chains [Bortolussi et al, *Information and Computation 247* (2016)]

Summary

- Method to derive predictive monitors for hybrid systems
- Based on neural networks \rightarrow high prediction accuracy
- Optimal uncertainty-based rejection criteria with statistical guarantees based on conformal prediction
- Computationally efficient \rightarrow suitable for runtime analysis
- Active learning to improve accuracy and reduce rejection rate