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Outline

• Background
• Reachability checking vs predictive monitoring for hybrid systems

• Neural Predictive Monitoring
• Predictive monitoring with neural networks
• Reject uncertain predictions with statistical guarantees
• Active learning to improve uncertain predictions 

• Experimental results



Hybrid and cyber-physical systems are ubiquitous and 
found in many safety-critical applications
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• Hybrid automata (HA) are a common 
formal model for hybrid and cyber-
physical systems

(Time-bounded) reachability: 
can an HA ℳ, starting in an initial region I, 

reach a state 𝑢 ∈ 𝑈 (within time 𝑇)?

Both bounded and unbounded versions are undecidable
[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]

• HA verification problem usually formulated as reachability 

Thermostat from Henzinger, The Theory of Hybrid Automata
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Motivation – Predictive Monitoring (PM)

• PM: predicting at runtime future violations from current state 
• PM is important for runtime safety assurance of HSs and CPSs 
• For example, in the Simplex Architecture [Sha, IEEE Software (2001)], decision 

module gives control to safety controller if a potential safety violation is imminent.
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Motivation - Predictive Monitoring (PM)

• Reachability from a single state
• Analysis is periodic Þ short time 

horizons
• Strict time constraints

• Reachability from a (large) region
• One-off analysis, potentially long 

time horizons
• No hard time constraints

(Offline) Reachability checking (Online) Predictive Monitoring

• Fully-fledged reachability checking is too expensive for online analysis

• At runtime, real system can deviate from offline model Þ strong 
guarantees of reachability checking no longer valid

• For PM, we need accurate and fast methods



PM problem

THIS IS A BINARY CLASSIFICATION PROBLEM!



Neural networks (NNs) as state classifiers

• Can we train an NN as a state classifier?

• In principle, yes: NNs are universal approximators 
[Hornik et al, Neural networks 2(5) (1989)]

• Trained NN state classifier runs in constant time ->  
suitable for predictive monitoring

• Very good accuracy but prediction errors can’t be 
entirely avoided



Neural networks (NNs) as state classifiers

Two kinds of prediction errors:

• False positives (FPs): a negative state is 
predicted to be positive
• Conservative decision

• False negatives (FNs): a positive state 
is predicted to be negative
• Can compromise system’s safety!

https://xkcd.com/1838/
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Neural State Classification [ATVA’18]

State distribution 𝒳 + 
Reachability oracle

Training set
𝑍*

Neural State 
Classifier ℎ

FNs via adversarial 
sampling

Active 
Learning

Limitation: it can’t detect and prevent prediction errors at runtime

D. Phan et al., Neural state classification for hybrid systems.  In Proc. ATVA 2018.

ℎ(𝑥) = likelihood that state 𝑥 is positive.
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Neural Predictive Monitoring [this work]
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• Conformal Prediction [Vovk et al] provides statistical guarantees on 
machine learning predictions

• Allows one to derive sound measures of prediction uncertainty, which 
we use to reject unreliable predictions, more likely to be wrong



Conformal prediction
• CP works on top of any supervised learning model
• CP complements single-point predictions with a prediction region 

and uncertainty measures
• Given significance 𝜖 ∈ (0,1) and a test point 𝑥∗, prediction region Γ∗5

is guaranteed to contain the true class of 𝑥∗ with probability 1 − 𝜖
• CP is distribution-free (only assumption is exchangeability, a weaker version of iid)



Conformal prediction – Idea (1/2)
• Prediction region Γ∗5 contains the classes likely to be true
• Define non-conformity function (NCF) 𝑓 that, for a point 𝑥, 𝑦 , 

measures the distance between 𝑦 and the model prediction ℎ(𝑥)
• In our case, 𝑓 𝑥, 𝑦 = |𝑦 − ℎ(𝑥)| (ℎ 𝑥 ∈ [0,1], 𝑦 ∈ {0,1})

• The distribution of scores 𝓕 = 𝐏𝐫𝒙∼𝓧(𝒇(𝒙, 𝒉∗(𝒙)) fully characterizes distance 
between predictions and true classes

• True 𝓕 is unknown à estimate it using a set of calibration points 𝑍.
sampled from 𝓧 and disjoint from training set
• Resulting empirical distribution converges to true distribution for large 

samples



Conformal prediction – Idea (2/2)

𝑓 𝑥∗, 𝑦

• 𝐏𝐫 𝐬𝐜𝐨𝐫𝐞 ≥ 𝒇 𝒙∗, 𝒚 > 𝝐
• Likely that 𝑓 𝑥∗, 𝑦 ∼ ℱ
• Include 𝑦 in 𝛤∗5

• 𝐏𝐫 𝐬𝐜𝐨𝐫𝐞 ≥ 𝒇 𝒙∗, 𝒚 ≤ 𝝐
• Unlikely that 𝑓 𝑥∗, 𝑦 ∼ ℱ
• Do not include 𝑦 in 𝛤∗5

𝑓 𝑥∗, 𝑦

• Γ∗5 for test point 𝑥∗ contains all 𝑦 s.t. it is likely that 𝑓 𝑥∗, 𝑦 ∼ ℱ
• hypothesis testing at level 𝜖 of 𝐻S: 𝑓 𝑥∗, 𝑦 ∼ ℱ VS 𝐻U: 𝑓 𝑥∗, 𝑦 ≁ ℱ



• Let 𝑦 be the class predicted by ℎ. Call 𝑝X the p-value Pr(𝑠𝑐𝑜𝑟𝑒 ≥ 𝑓 𝑥∗, 𝑦 )
• Easy to see that 𝑝X ≥ 𝑝X̀ (�̀� = {0,1} ∖ {𝑦})
• Because 𝑓 𝑥∗, 𝑦 ≤ 𝑓 𝑥∗, �̀�

• Prediction is reliable when |𝜞∗𝝐| = 𝟏
(i.e., Γ∗5 contains only one class, the true 
one with probability 1 − 𝜖)

• high 𝑝X and low 𝑝X̀ à large range 
of 𝜖 values for which |𝛤∗5| = 1

Prediction reliability measures

0 1𝑝X𝑝X̀

|Γ∗5| = 2 |𝜞∗𝝐| = 𝟏 |Γ∗5| = 0Size of prediction 
region

P-values
𝜖



• Idea: at runtime, reject all reachability predictions with low values of 
𝑝X (aka credibility, 𝑐) and 1 − 𝑝X̀ (aka confidence, 1 − 𝛾)
• Very efficient criterion à it reduces to just computing two p-values
• Independent of the choice of 𝜖
• But how to select thresholds for 1 − 𝛾 and 𝑐?
• Learn 1 − 𝛾 and 𝑐 thresholds that optimally separate correct and 

wrong predictions

Uncertainty-based rejection criterion



Learning optimal rejection thresholds

• Cross validation strategy using 𝑍. as validation set
• compute 1 − 𝛾f and 𝑐f for each calibration point 𝑖 (after removing 𝑖 from 𝑍.)

• Train two support vector classifiers (SVCs) over { 1 − 𝛾f, 𝑒𝑟𝑟f }f and 
{ 𝑐f, 𝑒𝑟𝑟f }f (𝑒𝑟𝑟f true iff ℎ correctly predicts point 𝑖) 

• Results in thresholds 1 − 𝛾h and 𝑐h below which prediction is rejected
• Four thresholds if we distinguish between FN and FP errors

• The rejection criterion is optimal
• SVCs maximize separation between classes. 
• 1-dimensional input, so linear SVCs suffice



Uncertainty-based active learning

• Idea: retrain after augmenting training and calibration sets with 
rejected sample, to improve prediction accuracy and rejection rate

Algorithm
1. Draw a random input sample. Keep only rejected (unreliable) points 𝑅. 
2. Label 𝑅 using reachability oracle. Redistribute samples into training and 

calibration sets.
3. Train a new predictor on augmented training set
4. Train new rejection thresholds on augmented calibration set
5. Repeat 1-4 as desired



Experimental evaluation

20K training set (70% training, 30% calibration). 100K for Helicopter. 10K test set.
Results averaged over 5 runs.

Initial training

• Rejection criterion identifies 
almost all FP and FN errors

• Excessive rejection rate



Experimental evaluation

• Active learning greatly reduces prediction error and rejection rate
• No significant improvement with passive approach

One re-training iteration. Re-training samples selected from batches of 200K (500K for helicopter)

Passive re-training (random samples) vs Active Learning



Related work on predictive monitoring

• Linear systems [Chen et al, RTSS (2017), Yoon et al, RV (2019)]
• Discrete-space Markov models

[Babaee et al, RV (2018), RV (2019)]
• Prediction regions for STL over ARMA models [Quin et al, HSCC (2019)]
• Neural approximation of PDEs for HJ reachability [Djeridane et al, CDC (2006)] 

[Rubies-Royo et al, arXiv:1803.03237 (2019)]
• Smoothed model checking: Gaussian processes to approximate the 

satisfaction function of continuous-time Markov chains [Bortolussi et al, 
Information and Computation 247 (2016)]



Summary

• Method to derive predictive monitors for hybrid systems
• Based on neural networks à high prediction accuracy
• Optimal uncertainty-based rejection criteria with statistical 

guarantees based on conformal prediction
• Computationally efficient à suitable for runtime analysis
• Active learning to improve accuracy and reduce rejection rate


