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Hybrid system verification

Hybrid and cyber-physical systems are ubiquitous and
found in many safety-critical applications
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Hybrid system verification

Off > 21
* Hybrid automata (HA) are a common r=20—{ 4= —01z |
formal model for hybrid and cyber- cer

physical systems

xr <19

Thermostat from Henzinger, The Theory of Hybrid Automata

* HA verification problem usually formulated as reachability

(Time-bounded) reachability:

can an HA M, starting in an initial region /, @
reach a state u € U (within time T)?
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Both bounded and unbounded versions are undecidable
[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]



Motivation — Predictive Monitoring (PM)

* PM: predicting at runtime future violations from current state
* PM is important for runtime safety assurance of HSs and CPSs

* For example, in the Simplex Architecture [Sha, IEEE Software (2001)], decision
module gives control to safety controller if a potential safety violation is imminent.
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Motivation - Predictive Monitoring (PM)

(Offline) Reachability checking

e Reachability from a (large) region

* One-off analysis, potentially long
time horizons

* No hard time constraints

(Online) Predictive Monitoring

e Reachability from a single state

* Analysis is periodic = short time
horizons

e Strict time constraints

* Fully-fledged reachability checking is too expensive for online analysis

* At runtime, real system can deviate from offline model = strong
guarantees of reachability checking no longer valid

* For PM, we need accurate and fast methods




PM problem

Problem 1 (Predictive monitoring for HA reachability). Given an HA M with state
space X, time bound 7', and set of unsafe states U C X, find a predictor h*, i.e., a
function h*: X —{0,1} such that for all z€ X, h*(x)=1 if M E=Reach(U,x,T), i.e.,
if it is possible for M, starting in z, to reach a state in U within time T; h*(s)=0
otherwise.

A state x€ X is called positive if M =Reach(U,z,T'). Otherwise, x is negative.

THIS IS A BINARY CLASSIFICATION PROBLEM!




Neural networks (NNs) as state classifiers

* Can we train an NN as a state classifier?

* In principle, yes: NNs are universal approximators
[Hornik et al, Neural networks 2(5) (1989)]

* Trained NN state classifier runs in constant time ->
suitable for predictive monitoring

* \Very good accuracy but prediction errors can’t be
entirely avoided




Neural networks (NNs) as state classifiers

Two kinds of prediction errors:

* False positives (FPs): a negative state is
predicted to be positive

 Conservative decision

* False negatives (FNs): a positive state
is predicted to be negative

e Can compromise system’s safety!

THIS 1S YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LNEAR ALGEBRA, THEN COLLECT
THE ANSWERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LURONG? )

JUST STIR THE PILE UNTIL
THEY START (OOKING RIGHT
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https://xkcd.com/1838/




Neural State Classification [ATVA’18]

State distribution X+ l Active
Reachability oracle Learning
Training set d Neural State d FNs via adversarial
Zs Classifier h sampling

h(x) = likelihood that state x is positive.

Limitation: it can’t detect and prevent prediction errors at runtime

D. Phan et al., Neural state classification for hybrid systems. In Proc. ATVA 2018.



Neural Predictive Monitoring [this work]

v
State distribution X' + Calibration set Active
Reachability oracle Z. Learning
J, T
Training set Neural State Conformal Uncertainty-based
Zs Classifier h prediction rejection criterion

 Conformal Prediction [Vovk et al] provides statistical guarantees on
machine learning predictions

* Allows one to derive sound measures of prediction uncertainty, which
we use to reject unreliable predictions, more likely to be wrong
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Conformal prediction

e CP works on top of any supervised learning model

* CP complements single-point predictions with a prediction region
and uncertainty measures

* Given significance € € (0,1) and a test point x*, prediction region I's
is guaranteed to contain the true class of x™ with probability 1 — €

* CP is distribution-free (only assumption is exchangeability, a weaker version of iid)




Conformal prediction — Idea (1/2)

* Prediction region I'S contains the classes likely to be true

* Define non-conformity function (NCF) f that, for a point (x, y),
measures the distance between y and the model prediction h(x)
* Inourcase, f(x,y) = |y — h(x)| (h(x) € [0,1], y € {0,1})

* The distribution of scores F = Pr,.x(f(x, h*(x)) fully characterizes distance
between predictions and true classes

* True F is unknown =2 estimate it using a set of calibration points Z,
sampled from X and disjoint from training set

* Resulting empirical distribution converges to true distribution for large
samples



Probability

Conformal prediction — Idea (2/2)

o ['? for test point x* contains all y s.t. it is likely that f(x*,y) ~ F
* hypothesis testing at level € of Hy: f(x*,y) ~FVSH,: f(x*,y) + F

Pr(score > f(x*,y)) <€
Unlikely that f(x*,y) ~ F
Do not include y in IF
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Prediction reliability measures

* Let y be the class predicted by h. Call p¥ the p-value Pr(score = f(x*,y))

e Easy to see that p¥ = p¥ (¥ = {0,1}\ {1})
* Because f(x*,y) < f(x*,¥)

| | (i.e., I'F contains only one class, the true
L one with probability 1 — €)

P-values
€

Size ofpredict!on ITE| = 2 re| =1 €| = 0 o hlgh py and low py - Iarge range
regton of € values for which |I[[f]| = 1

0 py pY 1 ° Prediction is reliable when |I'¢| = 1
I I
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Uncertainty-based rejection criterion

* Idea: at runtime, reject all reachability predictions with low values of
p” (aka credibility, c) and 1 — p” (aka confidence, 1 — y)

* Very efficient criterion = it reduces to just computing two p-values
* Independent of the choice of €
* But how to select thresholds for 1 —y and c?

* Learn 1 — y and c thresholds that optimally separate correct and
wrong predictions



Learning optimal rejection thresholds

* Cross validation strategy using Z. as validation set
e compute 1 — yi and c! for each calibration point i (after removing i from Z.)

* Train two support vector classifiers (SVCs) over {(1 — v erri)}i and
{(Cl, errl)}l- (err! true iff h correctly predicts point i)

* Results in thresholds 1 — y, and c¢; below which prediction is rejected
* Four thresholds if we distinguish between FN and FP errors

* The rejection criterion is optimal
* SVCs maximize separation between classes.
* 1-dimensional input, so linear SVCs suffice



Uncertainty-based active learning

* ldea: retrain after augmenting training and calibration sets with
rejected sample, to improve prediction accuracy and rejection rate

Algorithm
1. Draw a random input sample. Keep only rejected (unreliable) points R.

2. Label R using reachability oracle. Redistribute samples into training and
calibration sets.

3. Train a new predictor on augmented training set

Train new rejection thresholds on augmented calibration set

5. Repeat 1-4 as desired



Experimental evaluation

Initial training

Model

accuracy

fp

fn

rej. rate

Spiking Neuron (SN)
Artificial Pancreas (AP)
Helicopter (HE)

Water Tank (WT)
Cruise Controller (CC)

99.582%
99.488%
99.180%
99.818%
99.848%

24.4/24.6

30.4/30.6

47.4/48.8
8.6/8.6
8.2/8.2

17.2/17.2
20.6/20.6
33/33.2
9.6/9.6
7/7

5.68%
6.23%
9.88%
5.97%

3.46%

20K training set (70% training, 30% calibration). 100K for Helicopter. 10K test set.

Results averaged over 5 runs.

* Rejection criterion identifies
almost all FP and FN errors
* Excessive rejection rate



Experimental evaluation

Passive re-training (random samples) vs Active Learning

PASSIVE ACTIVE

Model|# samples fp fn rej. rate||accuracy fp fn rej. rate
SN 5748.2 [18.2/18.2(10.6/10.8| Bm9d% [|99.918% | 2.8/2.8 | 5.4/5.4 | 1.16%
AP 6081.8 | 23/23.4 (19.4/19.4| 594% [ 99.892% | 6.2/6.2 | 4.4/4.6 | 1.02%
HE 22014.6 |31.4/31.6| 26/26.6 | E20% |(|99.772% (11.2/11.2|10.4/11.6| 2.74%
WT 4130.2 | 8.4/8.4 (10.2/10.4| get8% || 99.962% | 2.8/2.8 1/1 0.70%
CcC 2280.6 6/6 6/6 SIB% (| 99.962% | 2/2 1.8/1.8 | 0.51%

One re-training iteration. Re-training samples selected from batches of 200K (500K for helicopter)

e Active learning greatly reduces prediction error and rejection rate
* No significant improvement with passive approach



Related work on predictive monitoring

* Linear systems [Chen et al, RTSS (2017), Yoon et al, RV (2019)]

* Discrete-space Markov models
[Babaee et al, RV (2018), RV (2019)]

* Prediction regions for STL over ARMA models [Quin et al, HSCC (2019)]

* Neural approximation of PDEs for HJ reachability [Djeridane et al, CDC (2006)]
[Rubies-Royo et al, arXiv:1803.03237 (2019)]

* Smoothed model checking: Gaussian processes to approximate the

satisfaction function of continuous-time Markov chains [Bortolussi et al,
Information and Computation 247 (2016)]



Summary

* Method to derive predictive monitors for hybrid systems
* Based on neural networks = high prediction accuracy

e Optimal uncertainty-based rejection criteria with statistical
guarantees based on conformal prediction

* Computationally efficient = suitable for runtime analysis
* Active learning to improve accuracy and reduce rejection rate



