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Type 1 diabetes (T1D)

Main types of diabetes

TYPE 1 DIABETES

Body does not produce
enough insulin

TYPE 2 DIABETES

Body produces insulin
but can’t use it well

GESTATIONAL

A temporary condition in
pregnancy

Consequences

Diabetes can lead to complications in many parts of
the body and increase the risk of dying prematurely.
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T1D therapy

!Glucose monitor (CGM) Y iriiieia il bl

Detects sugars levels 7 2 Insulln pump
R I ’ /' Delivers bolus insulin (to cover meals) and

under the skin ’ ’
\ / a basal insulin (to cover demand outside meals)

LIMITATIONS

- Pump and CGM don’t
communicate with each other

- Bolus is manually set by the patient
with meal announcements —
danger of wrong dosing

Image from:
https://www.medtronic-diabetes.com.au/pump-therapy/what-is-
insulin-pump-therapy



Closed-loop control, aka Artificial Pancreas (AP)

Glucose-insulin Insulin
metabolism

Challenges

— CGM is a “derived” measure of BG (noisy

and delayed)
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— Disturbances related to patient behavior

(Meals and Exercise)

Not just medical but also a CPS challenge




Artificial Pancreas, a control problem

OUR SOLUTION: Data-driven robust model predictive control (MPC) for the AP:

- Closed-loop control of both basal and bolus insulin
- Handles uncertainty by learning from data
- Accurate state estimation from CGM measurements
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Data-driven uncertainty sets

- Learn from data uncertainty sets that capture realizations of

random disturbances (meal and exercise)

- Method that provides uncertainty sets with probabilistic

guarantees [Bertsimas et al., Mathematical Programming 167(2), 235-292, 2018]:
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Meal/exercise data Uncertainty Sets
(questionnaires, surveys, sensors, ...)
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Insulin control and state estimation, formally

Robust MPC:
- Find the insulin therapy that minimizes the worst case performance w.r.t. unknown disturbances
- Performance: distance of predicted glucose from target + step-wise discrepancy of control strategy
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Moving Horizon Estimator (MHE), “Estimation a la MPC”:

- Uses a model to minimize distance between predicted and actual measurements, and
between predicted and estimated states over a moving window of length N

- It works also as a meal estimator: estimates the most-likely uncertainty parameter values
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Virtual patient learnt from NHANES database

We learn patient models from CDC’s NHANES
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(&~ National Health and Nutrition Examination Survey

Meal data from 8,611 participants

Data clustered into 10 main groups
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Summary

- Data-driven robust MPC approach for insulin therapy
- In-silico evaluation on real and synthetic data

- Towards fully closed-loop diabetes therapy

Ongoing and future work

- Formal synthesis of robust PID controllers [HVC'17] [ICCAD’18, submitted]
- "Human-in-the-loop” control

- Evaluation on real devices and patients



