Neural State Classification for Hybrid Systems

Nicola Paoletti Royal Holloway, University of London, UK

JWW: D Phan, T Zhang, SA Smolka, SD Stoller (Stony Brook University) and R Grosu (TU Wien)

ATVA 2018 – University of Southern California, LA, 8 Oct 2018

Hybrid system verification

Hybrid systems are ubiquitous and found in many safety-critical applications

Hybrid system verification

• Hybrid automata (HA) are a common formal model for hybrid systems

Thermostat from Henzinger, The Theory of Hybrid Automata

• HA verification problem usually formulated as reachability

(*Time-bounded*) reachability:

can an HA \mathcal{M} , starting in an initial region *I*, reach a state $u \in U$ (within time *T*)?

Both bounded and unbounded versions are undecidable

[Henzinger et al, *JCSS 57 1* (1998); Brihaye et al, *ICALP* (2011)]

Reachability checkers for HAs

- Over-approximate the set of states reachable from the initial region
 - Given initial region I of an HA \mathcal{M} and a time bound T, compute $ReachTube(\mathcal{M}, I, T)$
 - Check if $ReachTube(\mathcal{M}, I, T)$ intersects the unsafe region U
 - No: 100% safe
 - Yes: *maybe* unsafe, s.t. false positives
- Tools: HyCreate, Flow*, SpaceEx, iSAT, dReal, etc.
- HA reachability is computationally expensive

Motivation - Online model checking (OMC)

- OMC predicting at runtime future violations from current state is as important as offline model verification for HSs and CPSs
 - switch to fail-safe operation mode when failure is imminent (e.g. Simplex architecture of [Sha, IEEE Software (2001)])
- OMC focus is on reachability from a single state, and not from a (large) region
- OMC runs the the analysis periodically \rightarrow short time horizons
 - Avoids blow-up of reach-set over-approximation
- Runtime settings are less predictable
 - system might differ from model, noisy observations

Motivation - Online model checking (OMC)

- OMC focus is on reachability from a single state, and not from a (large) region
- OMC runs the the analysis periodically \rightarrow short time horizons
- Runtime settings are less predictable

Does OMC need fully-fledged reachability checking?

- We rather need methods that can work under real-time constraints
 - Reachability checking is too expensive for online analysis

State Classification Problem (SCP)

- We want a function that, given HA \mathcal{M} with state space S, set of unsafe states U, and time bound T, classifies every state $s \in S$ as either *positive* or *negative*
 - s is positive if M, starting in s, can reach a state in U within time T;

- *negative* o/w
- We call such a function a *state classifier,* a solution to the SCP
- \mathcal{M} can be parameterized by a set of parameters p

Neural networks (NNs) as state classifiers

(Deep) NNs are extremely successful at complex classification and regression tasks

Object detection

Classification of tumor and diseases from medical images

Verification

control

Neural networks (NNs) as state classifiers

- Can we train a NN to learn a HA reachability function, i.e., solve the SCP?
- In principle, YES: NNs are universal approximators [Hornik et al, Neural networks 2(5) (1989)]
- In practice, good accuracy but prediction errors can't be avoided
- Trained NN state classifier runs in constant time -> suitable for online model checking

Two kinds of errors in **neural state classification**:

- False positives: a negative state is predicted to be positive (conservative decision)
- False negatives: a positive state is predicted to be negative (can compromise system's safety!)

Neural State Classification (NSC)

Sampling methods

Uniform Sampling

• all states equally important

Balanced Sampling

- balanced number of pos. and neg. samples
- suitable when unsafe set U is small
- based on backwards HA simulation

Dynamics-Aware Sampling

- reflects the likelihood of visiting a state from the initial region
- based on estimating state distribution from random HA runs

Backwards simulator

- For generating arbitrarily many positive samples for a balanced dataset
- Given an unsafe state $u \in U$, simulate \mathcal{M} , the *reverse HA* of \mathcal{M} , for up to time T
- Every state in the reverse trajectory is positive
- We provide a constructive definition of reverse HA and prove its correctness (more general than [Henzinger et al, *STOC* (1995)] for rectangular automata)

Initial state of the reverse trajectory

Statistical guarantees via hypothesis testing

- We provide guarantees on classifier's performance on unseen (test) states using the *sequential probability ratio test* (SPRT):
 - Accuracy (probability of correct prediction): $P_A \ge \theta_A$
 - FN rate (probability that prediction is an FN): $P_{FN} \leq \theta_{FN}$
 - Subject to user-defined strength of test (prob. of type-I and type-II errors)
- Sequential means that we only need the number of test samples necessary for SPRT to make a decision
- Idea borrowed from statistical model checking [Younes et al, STTT 8.3 (2006)]
 - Where SPRT is for verifying $P(M \vDash \phi) \sim \theta$ for a probabilistic system

Reducing FN rate via falsification

- Make the classifier more conservative (reduce FN) through re-training with new FN samples
 - **Dual of CEGAR** [Clarke et al, CAV (2000)]: CEGAR refines an overapproximation using counterexamples (FPs)
- FNs found via a falsifier / adversarial sampling, an algorithm that finds states maximizing the discrepancy between predictions and true labels
- Under assumptions on falsifier and classifier, the algorithm converges to an empty set of FNs with high probability

(proof based on bounds on generalization error of ML models [Vapnik, *The nature of statistical learning theory* (2013)])

Inp	out:	classifier (NN) F,
		training samples D
Ou	tput:	"conservative" classifier F
do		
•	$\widehat{FN} \leftarrow$	- subset of the true FN set of F
	/*fou	nd via falsifier (genetic alg)*/

- $D \leftarrow D \cup \widehat{FN}$
- $F \leftarrow train(D)$ while $\widehat{FN} \neq \emptyset$ or max_iter

Iterative falsification / re-training algorithm

Experimental design

Hybrid system benchmark:

- Spiking neuron
- Inverted pendulum
- Quadcopter dynamics
- Cruise control
- Powertrain
- Helicopter

State classifier models:

- Feed-forward deep NNs (3 hidden layers, 10 neurons each, sigmoid and ReLU)
- Feed-forward shallow NNs (1 hidden layer, 20 neurons, sigmoid)
- Support Vector Machines (SVMs)
- Binary Decision Trees (BDTs)
- Nearest neighbor (returns label of closest training sample)

Accuracy and FNs

	Neuron		Pendulum		Quadcopter		Cruise		Powertrain		Helicopter		
	Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	
DNN-S	99.81	0.1	99.98	0	99.83	0.1	99.95	0.01	96.68	1.28	98.49	0.84	
DNN-R	99.52	0.29	99.93	0.04	99.89	0.06	99.98	0	96.21	1.08	98	0.96	Un
SNN	99.17	0.43	99.81	0	99.85	0.08	99.84	0.15	96.02	1.37	97.69	1.25	lifo
SVM	98.73	0.75	99.84	0	97.33	0.69	99.88	0.1	92.26	3.48	95.58	2.42	rm
BDT	99.3	0.37	99.6	0.17	99.52	0.2	99.84	0.08	95.59	2.19	80.07	9.8	
NBOR	97.03	1.22	99.69	0.14	99.53	0.25	99.49	0.33	71.44	14.51	67.39	16.98	
	Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	
DNN-S	99.83	0.12	99.89	0	99.82	0.04	99.94	0	97.2	0.86	98.24	0.79	
DNN-R	99.48	0.24	99.63	0.01	99.67	0.09	99.95	0	96.07	1.24	97.91	1.2	Bal
SNN	98.89	0.69	99.2	0	99.49	0.01	99.6	0	95.21	1.79	97.58	1.16	lan
SVM	98.63	0.78	99.37	0	96.93	0.2	99.61	0	91.84	3.3	95.36	1.85	ced
BDT	99.07	0.45	99.46	0.05	99.36	0.22	99.9	0.03	95.86	2.4	79.03	10.26	Γ
NBOR	96.95	1.62	99.51	0.04	99.11	0.56	99.47	0.11	71.33	13.99	65.18	17.48	

20K training samples, 10K test samples DNN-S: Sigmoid DNN SVM: Support Vector Machine SNN: Shallow NN DNN-R: ReLU DNN BDT: Binary Decision Tree SNN: Shallow NN

Accuracy and FNs

	Neuron Pendu		ılum	um Quadcopter			Cruise		Powertrain		Helicopter			
		Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	_
f	we incr	ease	trair	ning s	amp	les fro	m 20	K to 1	LM:	99.25	0.33	99.92	0.04	
	DNN-R	99.52	0.29	99.93	0.04	99.89	0.06	99.98	0	96.21	1.08	98	0.96	Un U
	SNN	99.17	0.43	99.81	0	99.85	0.08	99.84	0.15	96.02	1.37	97.69	1.25	lifo
	SVM	98.73	0.75	99.84	0	97.33	0.69	99.88	0.1	92.26	3.48	95.58	2.42	rm
	BDT	99.3	0.37	99.6	0.17	99.52	0.2	99.84	0.08	95.59	2.19	80.07	9.8	_
	NBOR	97.03	1.22	99.69	0.14	99.53	0.25	99.49	0.33	71.44	14.51	67.39	16.98	
		Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	Acc	FN	
	DNN-S	99.83	0.12	99.89	0	99.82	0.04	99.94	0	97.2	0.86	98.24	0.79	
	DNN-R	99.48	0.24	99.63	0.01	99.67	0.09	99.95	0	96.07	1.24	97.91	1.2	Ba
	SNN	98.89	0.69	99.2	0	99.49	0.01	99.6	0	95.21	1.79	97.58	1.16	lan
	SVM	98.63	0.78	99.37	0	96.93	0.2	99.61	0	91.84	3.3	95.36	1.85	cec
	BDT	99.07	0.45	99.46	0.05	99.36	0.22	99.9	0.03	95.86	2.4	79.03	10.26	-
	NBOR	96.95	1.62	99.51	0.04	99.11	0.56	99.47	0.11	71.33	13.99	65.18	17.48	

20K training samples, 10K test samples DNN-S: Sigmoid DNN SVM: Support Vector Machine SNN: Shallow NN DNN-R: ReLU DNN BDT: Binary Decision Tree SNN: Shallow NN

Statistical guarantees based on SPRT

 $\theta_A = 99.7\%$, $\theta_{FN} = 0.2\%$

In parenthesis: number of samples needed to reach the decision

	Neuron		Pend	ulum	Quad	copter	Cruise		
	$P_A \ge \theta_A$	$P_{FN} \le \theta_{FN}$	$P_A \ge \theta_A$	$P_{FN} \leq \theta_{FN}$	$P_A \ge \theta_A$	$P_{FN} \le \theta_{FN}$	$P_A \ge \theta_A$	$P_{FN} \leq \theta_{FN}$	
DNN-S	√ (5800)	√ (2900)	√ (2300)	√ (2300)	√ (4400)	√ (2300)	√ (3000)	√ (2300)	
DNN-R	X (3600)	X (8600)	√ (15500)	√ (4000)	X (1400)	√ (7300)	√ (3000)	√ (2300)	
SNN	X (700)	X (1000)	X (2900)	√ (2300)	X (1500)	√ (3400)	X (3600)	√ (2300)	
SVM	X (400)	X (600)	X (6600)	√ (2300)	X (200)	X (5300)	X (3400)	√ (2300)	
BDT	X (1700)	X (3300)	X (6300)	√ (15000)	X (800)	X (1100)	√ (2700)	√ (2900)	
NBOR	X (300)	X (300)	X (28500)	√ (2900)	X (1000)	X (1300)	X (3400)	X (2300)	

Strength of test: $\alpha = \beta = 0.01$.

Reducing FNs...

...with falsification and re-training

Reducing FNs

Test FNs are eliminated and the state classifier becomes more conservative

22

Pushing the DNN decision boundary

Related work

Machine-learning-aided verification

- Gaussian processes to approximate the satisfaction function of continuoustime Markov chains [Bortolussi et al, Information and Computation 247 (2016)]
- NeuroSAT, learning to solve SAT problems from examples [Selsam et al, *arXiv:1802.03685* (2018)]
- Reinforcement learning of DNN policies for heuristics in QBF solvers [Lederman et al, arXiv:1807.08058 (2018)]
- NN-based program synthesis from I/O examples

[Parisotto et al, *arXiv:1611.01855* (2016)]

Verification of NNs

- Robustness (absence of adversarial inputs) [Huang et al, CAV (2017); Gopinath et al, ATVA (2018)]
- Convex specifications [Katz et al, CAV (2017); Ehlers, ATVA (2017)]
- Analysis of NN components in-the-loop with CPS models
 [Dreossi et al, NFM (2017)]
- Range estimation for NNs (compute "reach set" of NN function)

[Dutta et al, NFM (2018); Xiang et al, IEEE Trans on Neural Networks and Learning Systems (2018)]

Conclusion

- State classification problem for hybrid systems
- NSC, a solution based on neural networks, efficient and with high accuracy
- Reverse HA construction for balanced sampling
- Statistical guarantees on classifier accuracy and FN rate
- Falsification-based techniques to reduce FNs and make classifier more conservative

Future work:

 More expressive properties, quantitative semantics, confidence intervals of point predictions