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Hybrid system verification

Hybrid systems are ubiquitous and found in many safety-critical applications
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Hybrid system verification

• Hybrid automata (HA) are a common 
formal model for hybrid systems

(Time-bounded) reachability: 
can an HA ℳ, starting in an initial region I, reach a state # ∈ % (within time &)?

Both bounded and unbounded versions are undecidable
[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]

• HA verification problem usually formulated as reachability 

Thermostat from Henzinger, The Theory of Hybrid Automata



• Over-approximate the set of states reachable from the 
initial region

• Given initial region ! of an HA ℳ and a time bound 
#, compute $%&'ℎ#)*% ℳ, !, #

• Check if $%&'ℎ#)*% ℳ, !, # intersects the 
unsafe region ,
• No: 100% safe

• Yes: maybe unsafe, s.t. false positives

• Tools: HyCreate, Flow*, SpaceEx, iSAT, dReal, etc.

• HA reachability is computationally expensive
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Motivation - Online model checking (OMC)
• OMC – predicting at runtime future violations from current state – is as 

important as offline model verification for HSs and CPSs 
• switch to fail-safe operation mode when failure is imminent 

(e.g. Simplex architecture of [Sha, IEEE Software (2001)])

• OMC focus is on reachability from a single state, and not from a (large) region

• OMC runs the the analysis periodically à short time horizons
• Avoids blow-up of reach-set over-approximation

• Runtime settings are less predictable
• system might differ from model, noisy observations



Motivation - Online model checking (OMC)

• OMC focus is on reachability from a single state, and not from a (large) region
• OMC runs the the analysis periodically à short time horizons
• Runtime settings are less predictable

Does OMC need fully-fledged reachability checking?

• We rather need methods that can work under real-time constraints
• Reachability checking is too expensive for online analysis



• We want a function that, given HA ℳ with state space ", set of unsafe states #, 
and time bound $, classifies every state % ∈ " as either positive or negative

Classifier(ℳ ' ,#, $)
%, '̅
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Unsafe / positive
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State Classification Problem (SCP)

• % is positive if ℳ, starting 
in %, can reach a state in #
within time $;
• negative o/w

• We call such a function a state classifier, a solution to the SCP

• ℳ can be parameterized by a set of parameters '



Neural networks (NNs) as state classifiers

Classification of tumor and 
diseases from medical imagesObject detection System identification and 

control

Verification

?

(Deep) NNs are extremely successful at complex classification and regression tasks



Neural networks (NNs) as state classifiers
• Can we train a NN to learn a HA reachability function, i.e., solve the SCP?

• In principle, YES: NNs are universal approximators [Hornik et al, Neural networks 2(5) (1989)]

• In practice, good accuracy but prediction errors can’t be avoided

• Trained NN state classifier runs in constant time ->  suitable for online model checking

Two kinds of errors in neural state classification:

• False positives: a negative state is predicted to be positive (conservative decision)

• False negatives: a positive state is predicted to be negative (can compromise system’s safety!)
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Neural State Classification (NSC)

), '̅



Oracles
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Oracle

• Simulator (deterministic)
• Reachability checker (dReal

[Gao et al, CADE (2013)])
• Backwards simulator

Positive Negative

Unsafe Unsafe



Sampling methods
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Uniform Sampling
• all states equally important

Balanced Sampling
• balanced number of pos. and neg. samples
• suitable when unsafe set U is small
• based on backwards HA simulation

Dynamics-Aware Sampling
• reflects the likelihood of visiting a 

state from the initial region
• based on estimating state distribution 

from random HA runs

U U U U U U



• For generating arbitrarily many positive 
samples for a balanced dataset

• Given an unsafe state ! ∈ #, simulate ℳ, the 
reverse HA of ℳ, for up to time %
• Every state in the reverse trajectory is positive

• We provide a constructive definition of 
reverse HA and prove its correctness (more 
general than [Henzinger et al, STOC (1995)] for 
rectangular automata)
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Statistical guarantees via hypothesis testing
• We provide guarantees on classifier’s performance on unseen (test) 

states using the sequential probability ratio test (SPRT):
• Accuracy (probability of correct prediction): !" ≥ $"
• FN rate (probability that prediction is an FN): !%& ≤ $%&
• Subject to user-defined strength of test (prob. of type-I and type-II errors)

• Sequential means that we only need the number of test samples 
necessary for SPRT to make a decision
• Idea borrowed from statistical model checking [Younes et al, STTT 8.3 (2006)]

• Where SPRT is for verifying ! ( ⊨ * ~ $ for a probabilistic system 



Reducing FN rate via falsification
• Make the classifier more conservative (reduce 

FN) through re-training with new FN samples
• Dual of CEGAR [Clarke et al, CAV (2000)]: CEGAR refines an 

overapproximation using counterexamples (FPs)

• FNs found via a falsifier / adversarial sampling, 
an algorithm that finds states maximizing the 
discrepancy between predictions and true labels 
• Under assumptions on falsifier and classifier, the 

algorithm converges to an empty set of FNs with 
high probability
(proof based on bounds on generalization error of ML models 
[Vapnik, The nature of statistical learning theory (2013)])

Input: classifier (NN) !, 
training samples "

Output: ”conservative” classifier !
do
• #!$ß subset of the true FN set of !

/*found via falsifier (genetic alg)*/
• "ß " ∪ #!$
• !ß train(") 
while #!$ ≠ ∅ or max_iter

Iterative falsification / re-training algorithm



Experimental design

Hybrid system benchmark:
• Spiking neuron
• Inverted pendulum
• Quadcopter dynamics
• Cruise control
• Powertrain
• Helicopter

State classifier models:
• Feed-forward deep NNs (3 hidden layers, 10 

neurons each, sigmoid and ReLU) 
• Feed-forward shallow NNs (1 hidden layer, 20 

neurons, sigmoid)
• Support Vector Machines (SVMs)
• Binary Decision Trees (BDTs)
• Nearest neighbor (returns label of closest 

training sample)



Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples, 
10K test samples



Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples, 
10K test samples

99.25  0.33 99.92  0.04If we increase training samples from 20K to 1M:



Statistical guarantees based on SPRT
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Neuron Pendulum Quadcopter Cruise
!" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%&

DNN-S ✓ (5800) ✓ (2900) ✓ (2300) ✓ (2300) ✓ (4400) ✓ (2300) ✓ (3000) ✓ (2300)
DNN-R ✘ (3600) ✘ (8600) ✓ (15500) ✓ (4000) ✘ (1400) ✓ (7300) ✓ (3000) ✓ (2300)
SNN ✘ (700) ✘ (1000) ✘ (2900) ✓ (2300) ✘ (1500) ✓ (3400) ✘ (3600) ✓ (2300)
SVM ✘ (400) ✘ (600) ✘ (6600) ✓ (2300) ✘ (200) ✘ (5300) ✘ (3400) ✓ (2300)
BDT ✘ (1700) ✘ (3300) ✘ (6300) ✓ (15000) ✘ (800) ✘ (1100) ✓ (2700) ✓ (2900)
NBOR ✘ (300) ✘ (300) ✘ (28500) ✓ (2900) ✘ (1000) ✘ (1300) ✘ (3400) ✘ (2300)

$" = 99.7%, $%& = 0.2% In parenthesis: number of samples needed to reach the decision

Strength of test: 0 = 1 = 0.01.
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…with falsification and re-training
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Reducing FNs
Test FNs are eliminated and 

the state classifier becomes more conservative
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Related work
Machine-learning-aided verification
• Gaussian processes to approximate the 

satisfaction function of continuous-
time Markov chains 
[Bortolussi et al, Information and 
Computation 247 (2016)]

• NeuroSAT, learning to solve SAT 
problems from examples 
[Selsam et al, arXiv:1802.03685 (2018)]

• Reinforcement learning of DNN policies 
for heuristics in QBF solvers [Lederman 
et al, arXiv:1807.08058 (2018)]

• NN-based program synthesis from I/O 
examples 
[Parisotto et al, arXiv:1611.01855 (2016)]

Verification of NNs
• Robustness (absence of adversarial inputs) 

[Huang et al, CAV (2017); Gopinath et al, ATVA (2018)]
• Convex specifications 

[Katz et al, CAV (2017); Ehlers, ATVA (2017)]
• Analysis of NN components in-the-loop with 

CPS models 
[Dreossi et al, NFM (2017)]

• Range estimation for NNs (compute ”reach 
set” of NN function) 
[Dutta et al, NFM (2018); Xiang et al, IEEE Trans on 
Neural Networks and Learning Systems (2018)]



Conclusion

• State classification problem for hybrid systems 
• NSC, a solution based on neural networks, efficient and with high accuracy 
• Reverse HA construction for balanced sampling
• Statistical guarantees on classifier accuracy and FN rate
• Falsification-based techniques to reduce FNs and make classifier more 

conservative

Future work:
• More expressive properties, quantitative semantics, confidence intervals of 

point predictions


