
Neural State Classification for
Hybrid Systems

Nicola Paoletti
Royal Holloway, University of London, UK

JWW: D Phan, T Zhang, SA Smolka, SD Stoller (Stony Brook University) and R Grosu (TU Wien)

ATVA 2018 – University of Southern California, LA, 8 Oct 2018

Hybrid system verification

Hybrid systems are ubiquitous and found in many safety-critical applications

Controller
(cyber part)

Plant
(physical part)

Control
inputs

Measur
ements

Cyber-physical system

Hybrid system verification

• Hybrid automata (HA) are a common
formal model for hybrid systems

(Time-bounded) reachability:
can an HA ℳ, starting in an initial region I, reach a state # ∈ % (within time &)?

Both bounded and unbounded versions are undecidable
[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]

• HA verification problem usually formulated as reachability

Thermostat from Henzinger, The Theory of Hybrid Automata

• Over-approximate the set of states reachable from the
initial region

• Given initial region ! of an HA ℳ and a time bound
#, compute $%&'ℎ#)*% ℳ, !, #

• Check if $%&'ℎ#)*% ℳ, !, # intersects the
unsafe region ,
• No: 100% safe

• Yes: maybe unsafe, s.t. false positives

• Tools: HyCreate, Flow*, SpaceEx, iSAT, dReal, etc.

• HA reachability is computationally expensive

4

Unsafe Region ,

Initial Region !

Reachtube

Reachability checkers for HAs

Motivation - Online model checking (OMC)
• OMC – predicting at runtime future violations from current state – is as

important as offline model verification for HSs and CPSs
• switch to fail-safe operation mode when failure is imminent

(e.g. Simplex architecture of [Sha, IEEE Software (2001)])

• OMC focus is on reachability from a single state, and not from a (large) region

• OMC runs the the analysis periodically à short time horizons
• Avoids blow-up of reach-set over-approximation

• Runtime settings are less predictable
• system might differ from model, noisy observations

Motivation - Online model checking (OMC)

• OMC focus is on reachability from a single state, and not from a (large) region
• OMC runs the the analysis periodically à short time horizons
• Runtime settings are less predictable

Does OMC need fully-fledged reachability checking?

• We rather need methods that can work under real-time constraints
• Reachability checking is too expensive for online analysis

• We want a function that, given HA ℳ with state space ", set of unsafe states #,
and time bound $, classifies every state % ∈ " as either positive or negative

Classifier(ℳ ' ,#, $)
%, '̅

Safe / negative

Unsafe / positive

0

1

7

State Classification Problem (SCP)

• % is positive if ℳ, starting
in %, can reach a state in #
within time $;
• negative o/w

• We call such a function a state classifier, a solution to the SCP

• ℳ can be parameterized by a set of parameters '

Neural networks (NNs) as state classifiers

Classification of tumor and
diseases from medical imagesObject detection System identification and

control

Verification

?

(Deep) NNs are extremely successful at complex classification and regression tasks

Neural networks (NNs) as state classifiers
• Can we train a NN to learn a HA reachability function, i.e., solve the SCP?

• In principle, YES: NNs are universal approximators [Hornik et al, Neural networks 2(5) (1989)]

• In practice, good accuracy but prediction errors can’t be avoided

• Trained NN state classifier runs in constant time -> suitable for online model checking

Two kinds of errors in neural state classification:

• False positives: a negative state is predicted to be positive (conservative decision)

• False negatives: a positive state is predicted to be negative (can compromise system’s safety!)

(", $)

Training
Data

ℳ ' ,"

FALSE NEGATIVE
REDUCTION

Test
DataOracle

Sampling

Learn classifier
F(ℳ ' ,", $)

Falsification and
retraining

Threshold
selection

Performance
evaluation

Statistical
guarantees

ANALYSIS

10

Neural State Classification (NSC)

), '̅

Oracles

11

Oracle

• Simulator (deterministic)
• Reachability checker (dReal

[Gao et al, CADE (2013)])
• Backwards simulator

Positive Negative

Unsafe Unsafe

Sampling methods

12

Uniform Sampling
• all states equally important

Balanced Sampling
• balanced number of pos. and neg. samples
• suitable when unsafe set U is small
• based on backwards HA simulation

Dynamics-Aware Sampling
• reflects the likelihood of visiting a

state from the initial region
• based on estimating state distribution

from random HA runs

U U U U U U

• For generating arbitrarily many positive
samples for a balanced dataset

• Given an unsafe state ! ∈ #, simulate ℳ, the
reverse HA of ℳ, for up to time %
• Every state in the reverse trajectory is positive

• We provide a constructive definition of
reverse HA and prove its correctness (more
general than [Henzinger et al, STOC (1995)] for
rectangular automata)

13

U

Reverse trajectory

Forward trajectory

Initial state of the reverse trajectory

Backwards simulator

Statistical guarantees via hypothesis testing
• We provide guarantees on classifier’s performance on unseen (test)

states using the sequential probability ratio test (SPRT):
• Accuracy (probability of correct prediction): !" ≥ $"
• FN rate (probability that prediction is an FN): !%& ≤ $%&
• Subject to user-defined strength of test (prob. of type-I and type-II errors)

• Sequential means that we only need the number of test samples
necessary for SPRT to make a decision
• Idea borrowed from statistical model checking [Younes et al, STTT 8.3 (2006)]

• Where SPRT is for verifying ! (⊨ * ~ $ for a probabilistic system

Reducing FN rate via falsification
• Make the classifier more conservative (reduce

FN) through re-training with new FN samples
• Dual of CEGAR [Clarke et al, CAV (2000)]: CEGAR refines an

overapproximation using counterexamples (FPs)

• FNs found via a falsifier / adversarial sampling,
an algorithm that finds states maximizing the
discrepancy between predictions and true labels
• Under assumptions on falsifier and classifier, the

algorithm converges to an empty set of FNs with
high probability
(proof based on bounds on generalization error of ML models
[Vapnik, The nature of statistical learning theory (2013)])

Input: classifier (NN) !,
training samples "

Output: ”conservative” classifier !
do
• #!$ß subset of the true FN set of !

/*found via falsifier (genetic alg)*/
• "ß " ∪ #!$
• !ß train(")
while #!$ ≠ ∅ or max_iter

Iterative falsification / re-training algorithm

Experimental design

Hybrid system benchmark:
• Spiking neuron
• Inverted pendulum
• Quadcopter dynamics
• Cruise control
• Powertrain
• Helicopter

State classifier models:
• Feed-forward deep NNs (3 hidden layers, 10

neurons each, sigmoid and ReLU)
• Feed-forward shallow NNs (1 hidden layer, 20

neurons, sigmoid)
• Support Vector Machines (SVMs)
• Binary Decision Trees (BDTs)
• Nearest neighbor (returns label of closest

training sample)

Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples,
10K test samples

Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples,
10K test samples

99.25 0.33 99.92 0.04If we increase training samples from 20K to 1M:

Statistical guarantees based on SPRT

19

Neuron Pendulum Quadcopter Cruise
!" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%&

DNN-S ✓ (5800) ✓ (2900) ✓ (2300) ✓ (2300) ✓ (4400) ✓ (2300) ✓ (3000) ✓ (2300)
DNN-R ✘ (3600) ✘ (8600) ✓ (15500) ✓ (4000) ✘ (1400) ✓ (7300) ✓ (3000) ✓ (2300)
SNN ✘ (700) ✘ (1000) ✘ (2900) ✓ (2300) ✘ (1500) ✓ (3400) ✘ (3600) ✓ (2300)
SVM ✘ (400) ✘ (600) ✘ (6600) ✓ (2300) ✘ (200) ✘ (5300) ✘ (3400) ✓ (2300)
BDT ✘ (1700) ✘ (3300) ✘ (6300) ✓ (15000) ✘ (800) ✘ (1100) ✓ (2700) ✓ (2900)
NBOR ✘ (300) ✘ (300) ✘ (28500) ✓ (2900) ✘ (1000) ✘ (1300) ✘ (3400) ✘ (2300)

$" = 99.7%, $%& = 0.2% In parenthesis: number of samples needed to reach the decision

Strength of test: 0 = 1 = 0.01.

20

FN

FP

Reducing FNs…

U

NN prediction:

positive

negative

Unseen (test) state:

positive

negative

…with falsification and re-training

21

AccuracyFNs and FPs

Algorithm iteration Algorithm iteration

22

FN

FP

Before After

Reducing FNs
Test FNs are eliminated and

the state classifier becomes more conservative

23

Before

After

Positive Negative

!

"

Zoomed-in bottom-right
portion of the state-space

Pushing the DNN decision boundary

Related work
Machine-learning-aided verification
• Gaussian processes to approximate the

satisfaction function of continuous-
time Markov chains
[Bortolussi et al, Information and
Computation 247 (2016)]

• NeuroSAT, learning to solve SAT
problems from examples
[Selsam et al, arXiv:1802.03685 (2018)]

• Reinforcement learning of DNN policies
for heuristics in QBF solvers [Lederman
et al, arXiv:1807.08058 (2018)]

• NN-based program synthesis from I/O
examples
[Parisotto et al, arXiv:1611.01855 (2016)]

Verification of NNs
• Robustness (absence of adversarial inputs)

[Huang et al, CAV (2017); Gopinath et al, ATVA (2018)]
• Convex specifications

[Katz et al, CAV (2017); Ehlers, ATVA (2017)]
• Analysis of NN components in-the-loop with

CPS models
[Dreossi et al, NFM (2017)]

• Range estimation for NNs (compute ”reach
set” of NN function)
[Dutta et al, NFM (2018); Xiang et al, IEEE Trans on
Neural Networks and Learning Systems (2018)]

Conclusion

• State classification problem for hybrid systems
• NSC, a solution based on neural networks, efficient and with high accuracy
• Reverse HA construction for balanced sampling
• Statistical guarantees on classifier accuracy and FN rate
• Falsification-based techniques to reduce FNs and make classifier more

conservative

Future work:
• More expressive properties, quantitative semantics, confidence intervals of

point predictions

