
Neural State Classification for
Hybrid Systems

Nicola Paoletti
Royal Holloway, University of London, UK

JWW: D Phan, T Zhang, SA Smolka, SD Stoller (Stony Brook University) and R Grosu (TU Wien)
Appeared in ATVA 2018, 16th International Symposium on Automated Technology for Verification and Analysis

Stony Brook University – 12 Oct 2018

Agenda

• Background: hybrid systems verification
• What are HS? Real-world examples
• Why verify? Safety-critical applications
• How verify? Formal models, reachability checking, online verification.

• Contribution: Neural State Classification
• NN-based method to approximate verification results for online analysis
• Sampling methods
• Statistical guarantees
• Reducing errors via falsification

• Experimental results

Hybrid systems, informally

continuous / physical / analog + discrete / digital components

4

Hybrid systems, examples

Cyber-physical systems
(aka control systems)

Controller
(cyber part)

Plant
(physical process)

ActuatorsSensors

5

Hybrid systems, examples
Embedded systems

(building blocks of the Internet of Things)

Physical process

ActuatorsSensors

ADC Microcontroller

ASIC FPGA

DAC

6

Sugar levels

Insulin
pump

Glucose-insulin
metabolism

Glucose
monitor

Cardiac devicesArtificial pancreas

Hybrid systems, examples

Closed-loop deep
brain stimulation

Hybrid systems, examples

Safety assurance, how?

Hybrid systems are ubiquitous and found in many safety-critical applications

How do we ensure that they work as intended?
e.g., pacemaker always keeps its pacing rate within healthy bounds,

cruise control always maintains safety distance, collision freedom, etc

The verification problem

Verification
(aka model checking)

ℳ ⊨ #?
System model ℳ

Specification#

✓

✘
(proof)

counterexample

• Verification is automated and exhaustive (considers all possible system’s behaviors)
• ℳ is a formal, executable model
• # is a correctness property over time
• Liveness: “at any time, something good must eventually happen”
• Safety: “something bad will never happen”
• …

Hybrid systems, formally

• Set of discrete locations: !"#
• Set of continuous variables: $%&, over X ⊆ ℝ
• Initial set of states: *+,- ⊆ !"# × /
• Invariant: *+0: !"# → 24
• Flow function (continuous evolution, ODEs): 56"7: !"# → (/ → /)
• Transition relation (discrete jumps):
• Jumps from source location to target location if guard condition holds
• Updates variables before reaching target

Hybrid automata [Henzinger, LICS 1996]

Hybrid automata - Examples

Bouncing ball

Claire J. Tomlin AA278A lecture notes

Guard
Reset

Flow function

Invariant

Location

Transition

Hybrid automata - Examples

Claire J. Tomlin AA278A lecture notes

Thermostat

Hybrid automata in action

Jiang et al, TACAS 2012

Timed automata network of Boston Scientific dual chamber pacemaker

Hybrid automata in action

HA model of cardiac cell action potential (Smolka et al)

Hybrid automata in action

HA model of prostate cancer treatment

Ideta et al, J. Nonlinear Sci. 18 (2008)

Hybrid automata in action
Powertain system by Toyota

Cruise control HA model

Hybrid automata verification
HA verification problem usually formulated as reachability

(Time-bounded) reachability:
can an HA ℳ, starting in an initial region I, reach a state # ∈ % (within time &)?

Both bounded and unbounded versions are undecidable
[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]

Time

I %

• Over-approximate the set of states reachable from the
initial region

• Given initial region ! of an HA ℳ and a time bound
#, compute $%&'ℎ#)*% ℳ, !, #

• Check if $%&'ℎ#)*% ℳ, !, # intersects the
unsafe region ,
• No: 100% safe

• Yes: maybe unsafe, s.t. false positives

• Tools: HyCreate, Flow*, SpaceEx, iSAT, dReal, etc.

• HA reachability is computationally expensive

18

Unsafe Region ,

Initial Region !

Reachtube

Reachability checkers for HAs

Motivation - Online model checking (OMC)
• OMC – predicting at runtime future violations from current state – is as

important as offline model verification for HSs and CPSs
• switch to fail-safe operation mode when failure is imminent

(e.g. Simplex architecture of [Sha, IEEE Software (2001)])

Decision
module

Plant

Complex
controller

Safety
controller

Sensor
data

Motivation - Online model checking (OMC)

• Reachability from a single state

• Analysis run periodically à
short time horizons

• Strict time constraints

• Less predictable settings
• Real system might differ from model
• Noisy observations

• Reachability from a (large) region

• One-off analysis, potentially long time
horizons (blow-up of over-approximation)

• No hard time constraints

• Controlled settings
• Model is ground truth

Offline Online

Motivation - Online model checking (OMC)

• OMC focus is on reachability from a single state, and not from a (large) region
• OMC runs the the analysis periodically à short time horizons
• Runtime settings are less predictable

Does OMC need fully-fledged reachability checking?

• We rather need methods that can work under real-time constraints
• Reachability checking is too expensive for online analysis

• We want a function that, given HA ℳ with state space ", set of unsafe states #,
and time bound $, classifies every state % ∈ " as either positive or negative

Classifier(ℳ ' ,#, $)
%, '̅

Safe / negative

Unsafe / positive

0

1

22

State Classification Problem (SCP)

• % is positive if ℳ, starting
in %, can reach a state in #
within time $;
• negative o/w

• We call such a function a state classifier, a solution to the SCP

• ℳ can be parameterized by a set of parameters '

Neural networks (NNs) as state classifiers

Classification of tumor and
diseases from medical imagesObject detection System identification and control

Verification
?

(Deep) NNs are extremely successful at complex classification and regression tasks

Natural language processing, sentiment analysis
Image credits: H. Andrew Schwartz Time-series analysis and prediction

Feedforward neural networks

Hidden layers

Output
layer

Input
layer

Output
of layer i

Activation
function
(sigmoid,
ReLU, …)

weights
Output
of layer
i-1

biases

Supervised learning of NN =
finding weights and biases that maximize the fit between predictions and training data

Neural networks (NNs) as state classifiers
• Can we train a NN to learn a HA reachability function, i.e., solve the SCP?

• In principle, YES: NNs are universal approximators [Hornik et al, Neural networks 2(5) (1989)]

• In practice, good accuracy but prediction errors can’t be avoided

• Trained NN state classifier runs in constant time -> suitable for online model checking

Two kinds of errors in neural state classification:

• False positives: a negative state is predicted to be positive (conservative decision)

• False negatives: a positive state is predicted to be negative (can compromise system’s safety!)

(", $)

Training
Data

ℳ ' ,"

FALSE NEGATIVE
REDUCTION

Test
DataOracle

Sampling

Learn classifier
F(ℳ ' ,", $)

Falsification and
retraining

Threshold
selection

Performance
evaluation

Statistical
guarantees

ANALYSIS

26

Neural State Classification (NSC)

), '̅

Oracles

27

Oracle

• Simulator (deterministic)
• Reachability checker (dReal

[Gao et al, CADE (2013)])
• Backwards simulator

Positive Negative

Unsafe Unsafe

Sampling methods

28

Uniform Sampling
• all states equally important

Balanced Sampling
• balanced number of pos. and neg. samples
• suitable when unsafe set U is small
• based on backwards HA simulation

Dynamics-Aware Sampling
• reflects the likelihood of visiting a

state from the initial region
• based on estimating state distribution

from random HA runs

U U U U U U

• For generating arbitrarily many positive
samples for a balanced dataset

• Given an unsafe state ! ∈ #, simulate ℳ, the
reverse HA of ℳ, for up to time %
• Every state in the reverse trajectory is positive

• We provide a constructive definition of
reverse HA and prove its correctness (more
general than [Henzinger et al, STOC (1995)] for
rectangular automata)

29

U

Reverse trajectory

Forward trajectory

Initial state of the reverse trajectory

Backwards simulator

Statistical guarantees via hypothesis testing

• We don’t just want empirical performance, but also to establish
guaranteed performance requirements

• Accuracy (probability of correct prediction): !" ≥ $"
• FN rate (probability that prediction is an FN): !%& ≤ $%&

• Deriving absolute guarantees is infeasible

• statistical guarantees (precise up to a small error probability) via the
sequential probability ratio test (SPRT) [Wald and Wolfowitz (1948)]

Sequential probability ratio test
• Sequential means that we only need the number of test samples

necessary to decide the threshold
• Precise up to arbitrary error bounds ! (prob of type-I errors) and "

(prob of type-II errors)
• To ensure both bounds, the test # ≥ Θ vs # < Θ is relaxed to
• '(: # ≥ *(vs '+: # ≤ p+ where *+ < Θ < *((but both close to Θ)

• '(accepted if ./0.10
≤ +23

4 ; '+ accepted if ./0.10
≥ 3

+24

• ./0.10
= ./

60 +2./ 70

.1
60 +2.1 70 , 89: # pos. samples; :9: # neg. samples

Reducing FN rate via falsification
• Make the classifier more conservative (reduce

FN) through re-training with new FN samples
• Dual of CEGAR [Clarke et al, CAV (2000)]: CEGAR refines

an overapproximation using counterexamples (FPs)

• FNs found via a falsifier / adversarial sampling,
an algorithm that finds states maximizing the
discrepancy between predictions and true
labels

max
$∈&

|() − +())|

Input: classifier (NN) +,
training samples .

Output: ”conservative” classifier +
do
• /+0ß subset of the true FN set of +

/*found via falsifier (genetic alg)*/
• .ß . ∪ /+0
• +ß train(.)
while /+0 ≠ ∅ or max_iter

Iterative falsification / re-training algorithm

True label of s Network prediction for s

Reducing FN rate via falsification
• The algorithm converges to an empty set of

FNs with high probability
(proof based on bounds on generalization error of ML
models [Vapnik, The nature of statistical learning theory (2013)])

Input: classifier (NN) !,
training samples "

Output: ”conservative” classifier !
do
• #!$ß subset of the true FN set of !

/*found via falsifier (genetic alg)*/
• "ß " ∪ #!$
• !ß train(")
while #!$ ≠ ∅ or max_iter

Iterative falsification / re-training algorithm

under assumptions that:
• Falsifier always finds a FN if it exists
• Classifier doesn’t make mistakes on positive training samples
• FP rate for test data is not below that for training data

Experimental design

Hybrid system benchmark:
• Spiking neuron
• Inverted pendulum
• Quadcopter dynamics
• Cruise control
• Powertrain
• Helicopter

State classifier models:
• Feed-forward deep NNs (3 hidden layers, 10

neurons each, sigmoid and ReLU)
• Feed-forward shallow NNs (1 hidden layer, 20

neurons, sigmoid)
• Support Vector Machines (SVMs)
• Binary Decision Trees (BDTs)
• Nearest neighbor (returns label of closest

training sample)

Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples,
10K test samples

Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples,
10K test samples

99.25 0.33 99.92 0.04If we increase training samples from 20K to 1M:

Statistical guarantees based on SPRT

37

Neuron Pendulum Quadcopter Cruise
!" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%&

DNN-S ✓ (5800) ✓ (2900) ✓ (2300) ✓ (2300) ✓ (4400) ✓ (2300) ✓ (3000) ✓ (2300)
DNN-R ✘ (3600) ✘ (8600) ✓ (15500) ✓ (4000) ✘ (1400) ✓ (7300) ✓ (3000) ✓ (2300)
SNN ✘ (700) ✘ (1000) ✘ (2900) ✓ (2300) ✘ (1500) ✓ (3400) ✘ (3600) ✓ (2300)
SVM ✘ (400) ✘ (600) ✘ (6600) ✓ (2300) ✘ (200) ✘ (5300) ✘ (3400) ✓ (2300)
BDT ✘ (1700) ✘ (3300) ✘ (6300) ✓ (15000) ✘ (800) ✘ (1100) ✓ (2700) ✓ (2900)
NBOR ✘ (300) ✘ (300) ✘ (28500) ✓ (2900) ✘ (1000) ✘ (1300) ✘ (3400) ✘ (2300)

$" = 99.7%, $%& = 0.2% In parenthesis: number of samples needed to reach the decision

Strength of test: 0 = 1 = 0.01.

38

FN

FP

Reducing FNs…

U

NN prediction:

positive

negative

Unseen (test) state:

positive

negative

…with falsification and re-training

39

AccuracyFNs and FPs

Algorithm iteration Algorithm iteration

40

FN

FP

Before After

Reducing FNs
Test FNs are eliminated and

the state classifier becomes more conservative

41

Before

After

Positive Negative

!

"

Zoomed-in bottom-right
portion of the state-space

Pushing the DNN decision boundary

Related work
Machine-learning-aided verification
• Gaussian processes to approximate the

satisfaction function of continuous-
time Markov chains
[Bortolussi et al, Information and
Computation 247 (2016)]

• NeuroSAT, learning to solve SAT
problems from examples
[Selsam et al, arXiv:1802.03685 (2018)]

• Reinforcement learning of DNN policies
for heuristics in QBF solvers [Lederman
et al, arXiv:1807.08058 (2018)]

• NN-based program synthesis from I/O
examples
[Parisotto et al, arXiv:1611.01855 (2016)]

Verification of NNs
• Robustness (absence of adversarial inputs)

[Huang et al, CAV (2017); Gopinath et al, ATVA (2018)]
• Convex specifications

[Katz et al, CAV (2017); Ehlers, ATVA (2017)]
• Analysis of NN components in-the-loop with

CPS models
[Dreossi et al, NFM (2017)]

• Range estimation for NNs (compute ”reach
set” of NN function)
[Dutta et al, NFM (2018); Xiang et al, IEEE Trans on
Neural Networks and Learning Systems (2018)]

Conclusion

• State classification problem for hybrid systems
• NSC, a solution based on neural networks, efficient and with high accuracy
• Reverse HA construction for balanced sampling
• Statistical guarantees on classifier accuracy and FN rate
• Falsification-based techniques to reduce FNs and make classifier more

conservative

Future work:
• More expressive properties, quantitative semantics, confidence intervals of

point predictions

Backup slides

Reverse HA automaton

Forward Reverse

• Locations and invariants stay the same
• Flows are reversed (sign changes) L L’g v

L L’v(g)v-1
becomes

Hybrid automata in action

Madl et al, RTSS 2006

Timed automata network of task scheduling in Boeing Bold Stroke platform

