
Neural State Classification for 
Hybrid Systems

Nicola Paoletti
Royal Holloway, University of London, UK 

JWW: D Phan, T Zhang, SA Smolka, SD Stoller (Stony Brook University) and R Grosu (TU Wien)
Appeared in ATVA 2018, 16th International Symposium on Automated Technology for Verification and Analysis

Stony Brook University – 12 Oct 2018



Agenda

• Background: hybrid systems verification
• What are HS? Real-world examples
• Why verify? Safety-critical applications
• How verify? Formal models, reachability checking, online verification.

• Contribution: Neural State Classification
• NN-based method to approximate verification results for online analysis
• Sampling methods
• Statistical guarantees
• Reducing errors via falsification

• Experimental results



Hybrid systems, informally

continuous / physical / analog + discrete / digital components
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Hybrid systems, examples

Cyber-physical systems
(aka control systems)

Controller
(cyber part)

Plant
(physical process)

ActuatorsSensors
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Hybrid systems, examples
Embedded systems

(building blocks of the Internet of Things)

Physical process

ActuatorsSensors

ADC Microcontroller

ASIC FPGA

DAC
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Sugar levels

Insulin
pump

Glucose-insulin 
metabolism

Glucose 
monitor

Cardiac devicesArtificial pancreas

Hybrid systems, examples

Closed-loop deep 
brain stimulation



Hybrid systems, examples



Safety assurance, how?

Hybrid systems are ubiquitous and found in many safety-critical applications

How do we ensure that they work as intended?
e.g., pacemaker always keeps its pacing rate within healthy bounds, 

cruise control always maintains safety distance, collision freedom, etc



The verification problem

Verification
(aka model checking)

ℳ ⊨ #?
System model ℳ

Specification#

✓

✘
(proof)

counterexample

• Verification is automated and exhaustive (considers all possible system’s behaviors)
• ℳ is a formal, executable model
• # is a correctness property over time
• Liveness: “at any time, something good must eventually happen”
• Safety: “something bad will never happen”
• …



Hybrid systems, formally

• Set of discrete locations: !"#
• Set of continuous variables: $%&, over X ⊆ ℝ
• Initial set of states: *+,- ⊆ !"# × /
• Invariant: *+0: !"# → 24
• Flow function (continuous evolution, ODEs): 56"7: !"# → (/ → /)
• Transition relation (discrete jumps): 
• Jumps from source location to target location if guard condition holds
• Updates variables before reaching target

Hybrid automata [Henzinger, LICS 1996]



Hybrid automata - Examples

Bouncing ball

Claire J. Tomlin AA278A lecture notes

Guard
Reset

Flow function

Invariant

Location

Transition



Hybrid automata - Examples

Claire J. Tomlin AA278A lecture notes

Thermostat



Hybrid automata in action

Jiang et al, TACAS 2012

Timed automata network of Boston Scientific dual chamber pacemaker



Hybrid automata in action

HA model of cardiac cell action potential (Smolka et al)



Hybrid automata in action

HA model of prostate cancer treatment

Ideta et al, J. Nonlinear Sci. 18 (2008) 



Hybrid automata in action
Powertain system by Toyota

Cruise control HA model



Hybrid automata verification
HA verification problem usually formulated as reachability 

(Time-bounded) reachability: 
can an HA ℳ, starting in an initial region I, reach a state # ∈ % (within time &)?

Both bounded and unbounded versions are undecidable
[Henzinger et al, JCSS 57 1 (1998); Brihaye et al, ICALP (2011)]

Time

I %



• Over-approximate the set of states reachable from the 
initial region

• Given initial region ! of an HA ℳ and a time bound 
#, compute $%&'ℎ#)*% ℳ, !, #

• Check if $%&'ℎ#)*% ℳ, !, # intersects the 
unsafe region ,
• No: 100% safe

• Yes: maybe unsafe, s.t. false positives

• Tools: HyCreate, Flow*, SpaceEx, iSAT, dReal, etc.

• HA reachability is computationally expensive
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Unsafe Region ,

Initial Region !

Reachtube

Reachability checkers for HAs



Motivation - Online model checking (OMC)
• OMC – predicting at runtime future violations from current state – is as 

important as offline model verification for HSs and CPSs 
• switch to fail-safe operation mode when failure is imminent 

(e.g. Simplex architecture of [Sha, IEEE Software (2001)])

Decision 
module

Plant

Complex 
controller

Safety 
controller

Sensor 
data



Motivation - Online model checking (OMC)

• Reachability from a single state

• Analysis run periodically à
short time horizons

• Strict time constraints

• Less predictable settings
• Real system might differ from model
• Noisy observations

• Reachability from a (large) region

• One-off analysis, potentially long time 
horizons (blow-up of over-approximation)

• No hard time constraints

• Controlled settings
• Model is ground truth

Offline Online



Motivation - Online model checking (OMC)

• OMC focus is on reachability from a single state, and not from a (large) region
• OMC runs the the analysis periodically à short time horizons
• Runtime settings are less predictable

Does OMC need fully-fledged reachability checking?

• We rather need methods that can work under real-time constraints
• Reachability checking is too expensive for online analysis



• We want a function that, given HA ℳ with state space ", set of unsafe states #, 
and time bound $, classifies every state % ∈ " as either positive or negative

Classifier(ℳ ' ,#, $)
%, '̅

Safe / negative

Unsafe / positive

0

1
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State Classification Problem (SCP)

• % is positive if ℳ, starting 
in %, can reach a state in #
within time $;
• negative o/w

• We call such a function a state classifier, a solution to the SCP

• ℳ can be parameterized by a set of parameters '



Neural networks (NNs) as state classifiers

Classification of tumor and 
diseases from medical imagesObject detection System identification and control

Verification
?

(Deep) NNs are extremely successful at complex classification and regression tasks

Natural language processing, sentiment analysis
Image credits: H. Andrew Schwartz Time-series analysis and prediction



Feedforward neural networks

Hidden layers

Output
layer

Input
layer

Output 
of layer i

Activation 
function
(sigmoid, 
ReLU, …)

weights
Output 
of layer 
i-1

biases

Supervised learning of NN = 
finding weights and biases that maximize the fit between predictions and training data



Neural networks (NNs) as state classifiers
• Can we train a NN to learn a HA reachability function, i.e., solve the SCP?

• In principle, YES: NNs are universal approximators [Hornik et al, Neural networks 2(5) (1989)]

• In practice, good accuracy but prediction errors can’t be avoided

• Trained NN state classifier runs in constant time ->  suitable for online model checking

Two kinds of errors in neural state classification:

• False positives: a negative state is predicted to be positive (conservative decision)

• False negatives: a positive state is predicted to be negative (can compromise system’s safety!)



(", $)

Training 
Data

ℳ ' ,"

FALSE NEGATIVE
REDUCTION

Test
DataOracle

Sampling

Learn classifier
F(ℳ ' ,", $)

Falsification and 
retraining

Threshold
selection

Performance
evaluation

Statistical 
guarantees

ANALYSIS
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Neural State Classification (NSC)

), '̅



Oracles
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Oracle

• Simulator (deterministic)
• Reachability checker (dReal

[Gao et al, CADE (2013)])
• Backwards simulator

Positive Negative

Unsafe Unsafe



Sampling methods
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Uniform Sampling
• all states equally important

Balanced Sampling
• balanced number of pos. and neg. samples
• suitable when unsafe set U is small
• based on backwards HA simulation

Dynamics-Aware Sampling
• reflects the likelihood of visiting a 

state from the initial region
• based on estimating state distribution 

from random HA runs

U U U U U U



• For generating arbitrarily many positive 
samples for a balanced dataset

• Given an unsafe state ! ∈ #, simulate ℳ, the 
reverse HA of ℳ, for up to time %
• Every state in the reverse trajectory is positive

• We provide a constructive definition of 
reverse HA and prove its correctness (more 
general than [Henzinger et al, STOC (1995)] for 
rectangular automata)
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U

Reverse trajectory

Forward trajectory

Initial state of the reverse trajectory

Backwards simulator



Statistical guarantees via hypothesis testing

• We don’t just want empirical performance, but also to establish 
guaranteed performance requirements

• Accuracy (probability of correct prediction): !" ≥ $"
• FN rate (probability that prediction is an FN): !%& ≤ $%&

• Deriving absolute guarantees is infeasible 

• statistical guarantees (precise up to a small error probability) via the 
sequential probability ratio test (SPRT) [Wald and Wolfowitz (1948)]



Sequential probability ratio test
• Sequential means that we only need the number of test samples 

necessary to decide the threshold
• Precise up to arbitrary error bounds ! (prob of type-I errors) and "

(prob of type-II errors) 
• To ensure both bounds, the test # ≥ Θ vs # < Θ is relaxed to 
• '(: # ≥ *( vs '+: # ≤ p+ where *+ < Θ < *( (but both close to Θ)

• '( accepted if ./0.10
≤ +23

4 ; '+ accepted if ./0.10
≥ 3

+24

• ./0.10
= ./

60 +2./ 70

.1
60 +2.1 70 , 89: # pos. samples; :9: # neg. samples



Reducing FN rate via falsification
• Make the classifier more conservative (reduce 

FN) through re-training with new FN samples
• Dual of CEGAR [Clarke et al, CAV (2000)]: CEGAR refines 

an overapproximation using counterexamples (FPs)

• FNs found via a falsifier / adversarial sampling, 
an algorithm that finds states maximizing the 
discrepancy between predictions and true 
labels 

max
$∈&

|( ) − +())|

Input: classifier (NN) +, 
training samples .

Output: ”conservative” classifier +
do
• /+0ß subset of the true FN set of +

/*found via falsifier (genetic alg)*/
• .ß . ∪ /+0
• +ß train(.) 
while /+0 ≠ ∅ or max_iter

Iterative falsification / re-training algorithm

True label of s Network prediction for s



Reducing FN rate via falsification
• The algorithm converges to an empty set of 

FNs with high probability
(proof based on bounds on generalization error of ML 
models [Vapnik, The nature of statistical learning theory (2013)])

Input: classifier (NN) !, 
training samples "

Output: ”conservative” classifier !
do
• #!$ß subset of the true FN set of !

/*found via falsifier (genetic alg)*/
• "ß " ∪ #!$
• !ß train(") 
while #!$ ≠ ∅ or max_iter

Iterative falsification / re-training algorithm

under assumptions that:
• Falsifier always finds a FN if it exists
• Classifier doesn’t make mistakes on positive training samples
• FP rate for test data is not below that for training data



Experimental design

Hybrid system benchmark:
• Spiking neuron
• Inverted pendulum
• Quadcopter dynamics
• Cruise control
• Powertrain
• Helicopter

State classifier models:
• Feed-forward deep NNs (3 hidden layers, 10 

neurons each, sigmoid and ReLU) 
• Feed-forward shallow NNs (1 hidden layer, 20 

neurons, sigmoid)
• Support Vector Machines (SVMs)
• Binary Decision Trees (BDTs)
• Nearest neighbor (returns label of closest 

training sample)



Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples, 
10K test samples



Accuracy and FNs

DNN-S: Sigmoid DNN

SVM: Support Vector Machine

SNN: Shallow NN

DNN-R: ReLU DNN

BDT: Binary Decision Tree

SNN: Shallow NN

20K training samples, 
10K test samples

99.25  0.33 99.92  0.04If we increase training samples from 20K to 1M:



Statistical guarantees based on SPRT
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Neuron Pendulum Quadcopter Cruise
!" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%& !" ≥ $" !%& ≤ $%&

DNN-S ✓ (5800) ✓ (2900) ✓ (2300) ✓ (2300) ✓ (4400) ✓ (2300) ✓ (3000) ✓ (2300)
DNN-R ✘ (3600) ✘ (8600) ✓ (15500) ✓ (4000) ✘ (1400) ✓ (7300) ✓ (3000) ✓ (2300)
SNN ✘ (700) ✘ (1000) ✘ (2900) ✓ (2300) ✘ (1500) ✓ (3400) ✘ (3600) ✓ (2300)
SVM ✘ (400) ✘ (600) ✘ (6600) ✓ (2300) ✘ (200) ✘ (5300) ✘ (3400) ✓ (2300)
BDT ✘ (1700) ✘ (3300) ✘ (6300) ✓ (15000) ✘ (800) ✘ (1100) ✓ (2700) ✓ (2900)
NBOR ✘ (300) ✘ (300) ✘ (28500) ✓ (2900) ✘ (1000) ✘ (1300) ✘ (3400) ✘ (2300)

$" = 99.7%, $%& = 0.2% In parenthesis: number of samples needed to reach the decision

Strength of test: 0 = 1 = 0.01.
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FN

FP

Reducing FNs…

U

NN prediction:

positive

negative

Unseen (test) state:

positive

negative



…with falsification and re-training
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AccuracyFNs and FPs

Algorithm iteration Algorithm iteration
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FN

FP

Before After

Reducing FNs
Test FNs are eliminated and 

the state classifier becomes more conservative
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Before

After

Positive Negative

!

"

Zoomed-in bottom-right 
portion of the state-space

Pushing the DNN decision boundary



Related work
Machine-learning-aided verification
• Gaussian processes to approximate the 

satisfaction function of continuous-
time Markov chains 
[Bortolussi et al, Information and 
Computation 247 (2016)]

• NeuroSAT, learning to solve SAT 
problems from examples 
[Selsam et al, arXiv:1802.03685 (2018)]

• Reinforcement learning of DNN policies 
for heuristics in QBF solvers [Lederman 
et al, arXiv:1807.08058 (2018)]

• NN-based program synthesis from I/O 
examples 
[Parisotto et al, arXiv:1611.01855 (2016)]

Verification of NNs
• Robustness (absence of adversarial inputs) 

[Huang et al, CAV (2017); Gopinath et al, ATVA (2018)]
• Convex specifications 

[Katz et al, CAV (2017); Ehlers, ATVA (2017)]
• Analysis of NN components in-the-loop with 

CPS models 
[Dreossi et al, NFM (2017)]

• Range estimation for NNs (compute ”reach 
set” of NN function) 
[Dutta et al, NFM (2018); Xiang et al, IEEE Trans on 
Neural Networks and Learning Systems (2018)]



Conclusion

• State classification problem for hybrid systems 
• NSC, a solution based on neural networks, efficient and with high accuracy 
• Reverse HA construction for balanced sampling
• Statistical guarantees on classifier accuracy and FN rate
• Falsification-based techniques to reduce FNs and make classifier more 

conservative

Future work:
• More expressive properties, quantitative semantics, confidence intervals of 

point predictions



Backup slides



Reverse HA automaton

Forward Reverse

• Locations and invariants stay the same
• Flows are reversed (sign changes) L L’g    v

L L’v(g)v-1
becomes



Hybrid automata in action

Madl et al, RTSS 2006

Timed automata network of task scheduling in Boeing Bold Stroke platform


